Skip to main content

Work Session on Statistical Data Confidentiality

Work Session on Statistical Data Confidentiality

29 - 31 October 2019
CBS The Hague Netherlands
  Document Title Documents Presentations
  Provisional Programme

PDF

 
  Information Note 1

PDF

 
  Information Note 2 PDF  
  Report PDF  
  Final report for CES PDF  
HLG-MOS and Statistical Data Confidentiality
- Taeke Gjaltema (UNECE)
  PDF
Topic 1: Access to microdata
Session Organizers: Aleksandra Bujnowska (Eurostat), Janika Tarkoma (Statistics Finland) and Steven Thomas (Statistics Canada)
  Microdata access facilities    
  Romania NIS – Microdata for scientific purposes.
- Lucian Alexandrescu (National Institute of Statistics of Romania)
PDF PDF
  Joint Safe Centre of the Hungarian Central Statistical Office and the Hungarian Academy of Sciences.
- Zoltán Vereczkei (Hungarian Central Statistical Office), János Köllő (Hungarian Academy of Sciences)
PDF PDF
  Access to microdata in the State Statistical Office of the Republic of North Macedonia.
- Mirjana Bosnjak, Slobodan Malevski (State Statistical Office of the Republic of North Macedonia)
PDF PDF
  Virtual data labs - A more flexible approach to access Statistics Canada microdata.
- Kelly Cranswick (Statistics Canada)
PDF PDF
  Harnessing the potentiality of microdata access risk management model.
- Natalia Volkow (INEGI)
PDF PDF
  Data Confidentiality in ICBS Research Rooms.
- Julia Vider (CBS, Israel)
PDF PDF
  Accessing Data in the ONS Secure Research Service: A Certification Regime for Remote Connectivity.
- Andrew Engeli (ONS, UK)
PDF PDF
  Microdata protection    
  Synthetic data generation for anonymization purposes. Application on the Norwegian Survey on living conditions/EHIS.
- Johan Heldal and Diana-Cristina Iancu (Statistics Norway)
PDF PDF
  Statistical Disclosure Control for outputs:  A Handbook.
- Richard Welpton and Arne Wolters (The Health Foundation), Emily Griffiths (University of Manchester), James Scott and Christine Woods (University of Essex)
PDF PDF
  A practice guide for microdata anonymization.
- Thijs Benschop and Matthew Welch (World Bank)
PDF PDF
  Training research output checkers.
- Felix Ritchie (University of the West of England)
PDF PDF
  Creation of synthetic microdata using dummy random variables of high dimension statistics based on big data.
- Kiyomi Shirakawa, (Institute of Economic Research, Hitotsubashi University)
PDF PDF
       
Topic 2: Tabular data 
Session Organizers: Sarah Giessing (Destatis)
  Concepts for generalising tools implementing the cell key method to the case of continuous variables.
- Sarah Giessing and Reinhard Tent (Destatis)
PDF PDF
  Prodcom disclosure control with non-nested national and european classification.
- Maxime Beauté, Maël Buron (Insee)
PDF PDF
  Using a stabilized Benders algorithm for cell suppression.
- Daniel Baena, Jordi Castro and Antonio Frangioni (Universitat Politecnica de Catalunya)
PDF PDF
  Releasable inner cell frequencies by post-processing protected tabular data.
- Øyvind Langsrud (Statistics Norway)
PDF PDF
  Primary analysis of disclosure risk in tabular data from a Brazilian economic survey.
- Samela Batista Arantes and Maysa S. de Magalhaes (Brazilian Institute of Geography and Statistics)
PDF PDF
  Algorithmic Matching Attacks on Optimally Suppressed Tabular Data.
- Kazuhiro Minami (The Institute of Statistical Mathematics, Tokyo)
PDF PDF
  ABS perturbation methodology through the lens of Differential Privacy. 
- Joseph Chien (ABS)
PDF PDF
       
Topic 3: Risk assessment
Session Organizers: Josep Domingo-Ferrer (Universitat Rovira i Virgili), Krish Muralidhar (University of Oklahoma)
  Trade-off between Information Utility and Disclosure Risk in GA Synthetic Data Generator.
- Yingrui Chen, Jennifer Taub, Mark Elliot (University of Manchester)
PDF PDF
  The Synthetic Data Challenge.
- Mark Elliot and Jennifer Taub (University of Manchester)
PDF PDF
  10 is the safest number that there’s ever been.
- Felix Ritchie (University of the West of England)
PDF PDF
  Connecting privacy models and statistical disclosure control methods through bistochastic anonymization.
- Krish Muralidhar (U.Oklahoma), Nicolas Ruiz (OECD), Josep Domingo-Ferrer (URV)
PDF PDF
  Privacy, confidentiality, disclosure: What is the difference ?
- Krish Muralidhar (University of Oklahoma), Rathindra Sarathy (Oklahoma State University)
PDF PDF
       
Topic 4: Emerging issues
Session Organizers: Josep Domingo-Ferrer (Universitat Rovira i Virgili)
  Comparing methods of safely plotting variables on a map.
- Y. (Sapphire) Han, Peter-Paul de Wolf and Edwin de Jonge (Statistics Netherlands)
PDF PDF
  Privacy Preserving Set Intersection.
- Guiseppe Bruno and Diana Nicoletti (Bank of Italy), Monica Scannapieco and Diego Zardetto (Istat)
PDF PDF
  The Potential of Anonymization Methods for Creating Detailed Geographical Data in Japan.
- Shinsuke Ito (Chuo University, Japan) and Masayuki Terada (NTT DOCOMO, INC, Japan)
PDF PDF
  Protecting consumer privacy in smart metering by randomized response.
- Bastian Stölb and Josep Domingo-Ferrer (Universitat Rovira i Virgili)
PDF PDF
  Statistical confidentiality of agricultural surveys in the context of the AGRISurvey program. Thijs Benschop,
- Clara Aida Khalil (FAO)
PDF PDF
       
Topic 5: Framework for confidentiality
Session Organizers: Aleksandra Bujnowska (Eurostat), Janika Tarkoma (Statistics Finland)
  Understanding personalities in data access decision-making.
- Richard Welpton (The Health Foundation)
PDF PDF
  Successes and Challenges in Increasing Accessibility at Statistics Canada.
- Steven Thomas (Statistics Canada)
PDF PDF
  Evaluation criteria for the selection of a SDC Method.
- Christiane Seifert, Johannes Rohde (IT.NRW) and Sarah Giessing (Destatis)
PDF PDF
  Crisis management – training, practicing and testing.
- Janika Tarkoma and Harri Koskinen (Statistics Finland)
PDF PDF
  Data protection laws and methods in official statistics.
- Aleksandra Bujnowska (Eurostat)
PDF PDF
       
Topic 6: Confidentiality issues of the Census 2020/2021 round
Session Organizers: Eric Schulte Nordholt (Statistics Netherlands)
  A framework for assessing perturbative methods for protection of Census 2021 data at Statistics Portugal.
- Ines Rodrigues, Paula Campos and Teresa Fragoso (Statistics Portugal)
PDF PDF
  Ensuring data confidentiality of All-Russian Population Census 2020.
- Anna Troitskaya (Rosstat)
PDF PDF
       
Topic 7: Software tools for statistical data confidentiality
Session Organizers: Peter-Paul de Wolf (Statistics Netherlands)
  cellKey - consistent perturbation of statistical tables.
- Bernhard Meindl (Statistics Austria) and Tobias Enderle (Destatis)
PDF PDF
  Microdata.no - Safe Access to Register Microdata.
- Johan Heldal and Svein Johansen (Statistics Norway), Ørnulf Risnes (Norwegian Centre for Research Data)
PDF PDF