Skip to main content

Georgia

UNECE evaluation supports Tbilisi, Georgia, for smart and sustainable development

According to the UNECE Smart Sustainable Cities profile for Tbilisi, presented today in the capital of Georgia, the city has made important efforts in implementing the 2030 Agenda for Sustainable Development, capitalizing on the growth opportunities generated by the Association Agreement between Georgia and the European Union (EU). The Profile notes, however, the need for strengthened measures in areas including water and waste management, mobility, housing, and governance.  

National VAW survey in Georgia: experience on integrating new topics and interviewing men

Languages and translations
English

Vasil Tsakadze

Head of Social Statistics Department

National Statistics Office of Georgia

National VAW survey in Georgia 2022

Violence Against Women Survey

Survey Characteristics

❖ Violence Against Women Survey in Georgia was conducted for the second time in 2022, during October-

November (the first survey was conducted in 2017)

❖ The survey methodology was designed based on the latest international guidelines and standards

❖ Methodological manual for the EU survey on gender-based violence against women and other forms of

inter-personal violence (EU-GBV), EUROSTAT, 2021

❖ Guidelines for Producing Statistics on Violence against Women - Statistical Surveys, UN, 2014

❖ The Violence Against Women Survey Implementation Toolkit, UN-ESCWA, 2021

❖ Sample size: 3 300 women and 1 104 men

❖ Data Disaggregation:

❖ In case of women survey - Tbilisi; Other urban areas; Rural areas

❖ In case of men survey – Country level

❖ Survey coverage

❖ All regions of Georgia were covered, excluding occupied territories of the country

Violence Against Women Survey

Sampling Design

Primary Sampling Unit (PSU) - Enumeration area

(For the women and men survey different enumeration areas were sampled)

In each sampled enumeration area:

10 households – For women survey

8 households - For men survey

In each sampled household

One respondent aged 15-69 years

For each type of settlement

Three-stage Stratified Cluster Random Sampling

Violence Against Women Survey

Sampling Design

❖ Instrumental of the survey

❖ Women’s questionnaire

❖ Men’s questionnaire

❖ Interviewer manuals – fieldwork procedures and instructions for filling the questionnaires

❖ Questionnaires were prepared in 4 different languages (Georgia, Armenian. Azerbaijani, English)

❖ Data collection methods

❖ Using Computer-Assisted Personal Interview (CAPI)

❖ The World Bank software (Survey Solutions) was used to prepare electronic questionnaires

❖ Fieldwork was conducted by interviewers of Geostat, who were experienced in households surveys

❖ 14 fieldwork supervisors – same for both surveys

❖ 82 interviewers

❖ 59 women for women survey

❖ 23 men for men survey

❖ Data cleaning and processing is carried out by the staff of the head office

❖ Cleaning of database

❖ Process of calculating indicators and data analyses is in progress

Violence Against Women Survey

Questionnaires

Women’s Questionnaire

• Respondent of questions about household — Informed member of household aged 15 years and older

• Respondent of questions about women — randomly selected woman aged 15-69 years

• Data collection method — Computer-Assisted Personal Interview (CAPI)

Men’s Questionnaire

• Respondent of questions about household — Informed member of household aged 15 years and older

• Respondent of questions about men — randomly selected man aged 15-69 years

• Data collection method — Computer-Assisted Personal Interview (CAPI)

Violence Against Women Survey

Questionnaires

BACKGROUND OF THE CURRENT OR MOST RECENT HUSBAND/PARTNER

CHILDHOOD EXPERIENCES

HEALTH

FINANCIAL STATUS AND WORK

MARITAL STATUS

BACKGROUND OF THE RESPONDENT

HOUSEHOLD CHARACTERISTICS

WOMEN’S HOUSEHOLD SELECTION FORM

Women’s Questionnaire

COMPLETING AND CONCLUDING THE INTERVIEW

SOCIAL NORMS AND ATTITUDES

STALKING

SEXUAL HARASSMENT

NON-PARTNER VIOLENCE

IMPACT AND HELP-SEEKING BEHAVIOURS

VIOLENCE-RELATED INJURIES

HUSBAND/PARTNER DOMESTIC VIOLENCE

Violence Against Women Survey

Questionnaires

Men’s Questionnaire

MEN’S HOUSEHOLD SELECTION FORM

HOUSEHOLD CHARACTERISTICS

BACKGROUND OF THE RESPONDENT

CHILDHOOD EXPERIENCES

HEALTH AND WELL- BEING

MARITAL STATUS BACKGROUND OF THE

CURRENT OR MOST RECENT WIFE/PARTNER

ATTITUDES ABOUT RELATIONS BETWEEN

MEN AND WOMEN

SOCIAL NORMS AND ATTITUDES

COMPLETING AND CONCLUDING THE

INTERVIEW

Violence Against Women Survey

Data Quality Assurance

❖ Checking the completed questionnaires

❖ Automatic, logical and arithmetic controls

❖ Supervisors - Approving/rejecting questionnaires

❖ Staff of head office - Approving/rejecting questionnaires

❖ Monitoring system — When visiting the respondent, interviewers recorded the GPS coordinates

❖ GPS coordinates were compared to the GPS coordinates of the Census

Violence Against Women Survey

Pilot Survey

✓ 8 interviewers and 1 local supervisor was involved in the pilot

✓ Training of the field staff was conducted

✓ 30 women and 15 men were interviewed during the pilot (Tbilisi, small city and a village);

✓ Respondents from different age and ethnic groups were selected to test the questionnaires in different settings and languages;

✓ Pilot for the survey took place in enumeration areas that was not part of the final sample;

✓ After the pilot meeting was held where interviewers, Geostat staff, international and national consultants were participating

✓ Based on the pilot results relevant updates were made to finalize the questionnaires and interviewer manuals;

Violence Against Women Survey

Respondent letter and Protocols

Protocol on interviewing children under age 18

Informed consent from adult and child

Protocol when witnessing incidents of serious forms of VAW or revealing child sexual abuse

Reporting to supervisor and reference group rapid response mechanism

Protocol when revealing thoughts/cases of suicide/self-hurting

A special message designed by psychologist/VAW specialist and referral to relevant services

Protocol when revealing any form of violence against women and/or domestic violence

A special message designed by psychologist/VAW specialist and referral to relevant services

Protocol when revealing any form of violence against children

A special message designed by psychologist/VAW specialist and referral to relevant services

✓ Respondent letters were prepared and distributed ✓ Brochures on health and VAW services were prepared and distributed ✓ Protocols on interviewing children and reacting on violence cases were prepared

Social Statistics Department

National Statistics Office of Georgia

[email protected]

www.geostat.ge

Thank you for your attention!

Production and use of gender statistics in Georgia

Languages and translations
English

26/04/2023

1

GOGITA TODRADZE Executive Director

National Statistics Office of Georgia (GEOSTAT)

PRODUCTION AND USE OF GENDER STATISTICS IN GEORGIA

Gender Statistics at GEOSTAT

PRODUCTION OF GENDER STATISTICS AT GEOSTAT  STARTED AT THE END OF 1990S

1

2

26/04/2023

2

First activities in Gender Statistics

B O O K L E T “ W O M E N A N D M E N I N G E O R G I A ”

Every booklet, compared to the previous ones, is closer to the

world statistical standards

13 editions of “women and men” were published Since 1999

The booklet represents a simple, but an effective Tool to attract 

attention towards gender data

FURTHER DEVELOPMENT of GENDER STATISTICS

• Increasing the number of available gender-disaggregated indicators

• Improvement of data dissemination

• Strengthening dialogue with users

SINCE 2009 THE NEW LAW ON OFFICIAL STATISTICS OF GEORGIA

Development of gender statistics comprises the following aspects:

3

4

26/04/2023

3

PRODUCTION OF GENDER STATISTICS

• The UNECE’s minimum set of gender indicators showed that despite producing most of the MSGIs, the gaps were mostly related to indicators derived from the surveys on VAW and time use

• Production of gender statistics has been very positively influenced by the active nationalization process of SDG indicators in the country

• GEOSTAT has conducted numerous comprehensive surveys, with the overall support of UN women

The picture can't be displayed.

Data sources The picture can't be displayed.

The picture can't be displayed.

GENDER STATISTICS

Statistical Sources

Quarterly business surveys

Annual business surveys

Specialized surveys (VAW, TUS, MICS)

Administrative Sources

NAPR

Tax Office

Quarterly business surveys

Annual business surveys

Quarterly business surveys

Annual business surveys

Quarterly business surveys

Annual business surveys

Population Census

regular business surveys

regular household

surveys (HBS, LFS)

Ministry of Health and social protection

Ministry of Education, Culture and Science

5

6

26/04/2023

4

The picture can't be displayed.

The picture can't be displayed.

Data Collection methods

Computer Assisted Personal Interview (CAPI)

For Household surveys

Online Questionnaires and

Web based self reporting for Business surveys

Latest achievements in gender statistics

New surveys and indicators

 Survey of Violence Against Women

 Survey on Asset Ownership

 Time Use Survey

 MICS

 Gender pay gap

ASSESMENT of Gender Statistics

STRATEGY of Gender Statistics

IMPROVED data dissemination

7

8

26/04/2023

5

EVIDENCE AND DATA FOR GENDER EQUALITY: MEASURING ASSET OWNERSHIP FROM GENDER PERSPECTIVE

GEOSTAT has been one of the pilot countries within the 

framework of the evidence and data for gender equality (EDGE) 

initiative of the un statistics division

Survey on measuring asset ownership and  Entrepreneurship from a gender perspective

Survey results has been published in 2018

SURVEY ON VIOLANCE AGAINST WOMEN

More than 1 in 4 women (27%) reported having experienced physical and/or sexual violence by an intimate partner, or sexual violence by a non‐partner including during childhood, or sexual harassment in their lifetime.

NATIONAL SURVEY ON VIOLENCE AGAINST  WOMEN IN GEORGIA, 2017, 2022

THE RESULTS OF THE SURVEY SHOWED THAT:

12% of women reported having experienced physical and/or sexual violence by an intimate partner, or sexual violence by a non‐partner in their lifetime.

9

10

26/04/2023

6

Time Use Survey

 The overall proportion of time spent by women on unpaid domestic and caregiving work was 17.8 per cent, which is about 4.8 times that of men’s time (3.7 per cent).

 Women spend approximately four times longer on committed time activities than men s (covering unpaid domestic and caregiving services as well as volunteering).

 Men spent more time on contracted and free time activities than women (such as leisure and socialization)

Key findings

Gender Pay Gap

 In 2021 the adjusted hourly gender pay gap equaled 15.7%. The same indicator calculated at the monthly level equaled 21.4%

 the highest hourly gender pay gap was observed in the Industry sector (30.6%)

 the highest hourly gender pay gap was observed in Craft and related trades workers position (46.4%), Managers position (40.4%) is on the second place

11

12

26/04/2023

7

Data dissemination tools

Means of data dissemination 1

2

3

4

Detailed releases

Infographics

Video clips

Improved design

New services5

Since 2013 ‐ gender statistics data are also uploaded in the PC AXIS format

GEOSTATs website and applications for Android and IOS

WWW.GEOSTAT.GE

Android  &  IOS

Adapted for persons with disabilities 

13

14

26/04/2023

8

The picture can't be displayed.

Gender Statistics Portal

DIALOGUE WITH USERS

 Media

 Academia

 Business sector

Mayors, Local government and self-government

 Public institutions

 NGOs

 Respondents

Around 15 meetings annually, with:

15

16

26/04/2023

9

FUTURE PLANS

 Strengthen national statistical capacities and data collection system

 Implementation of international standards and requirements

 Active cooperation with international organizations and experts

 Continuing dialogue with owners of data sources and users

 Asses and looking for new data sources

 Review and discuss data gaps

 Prioritize non-produced indicators

 working with data quality

The picture can't be displayed.

Alternative sources and non-traditional methods

Use more and more administrative data sources

Establish modern system for data collection

Looking for new alternative data sources

17

18

26/04/2023

10

GOGITA TODRADZE

Executive Director

National Statistics Office of Georgia

[email protected]

THANK YOU FOR YOUR ATTENTION!

WWW.GEOSTAT.GE

Reliable Data for Right Decisions!

19

Gender-in-trade in Georgia

Languages and translations
English

Gender in Trade in Georgia

Paata Shavishvili Deputy Executive Director

National Statistics Office of Georgia (Geostat)

Main Results of the Assessment

General Approach

❑Sectoral level - gender-in-trade indicators were analyzed for 5 export products

4-digit HS codes for exported commodities linked to the corresponding NACE codes of domestic

production

❑ Micro-linking of available sources to trade data

Almost 60,000 enterprises which conducted exports and/or imports activities in 2016-2020

represented the basis for linking non-trade data

Data Sources

❑Customs data from Revenue Service of the Ministry of Finance

trade in goods

❑Statistical Business Register

enterprise basic characteristics, ownership data

❑Annual Surveys of Enterprises

sex-disaggregated data on employment and wages; data on turnover

❑Structure of Earnings Survey

sex-disaggregated data on employment and wages by occupations at 1-digit ISCO level

Mapping of HS export codes to NACE

8703 Motor cars 45.1 Sale of motor vehicles

2204 Wine of fresh grapes 11.02 Manufacture of wine from grapes

2201 Waters, natural or artificial mineral and aerated waters

11.07.01 Production of mineral waters and other bottled waters

0802 Hazelnuts and other nuts 10.39 Other processing and preserving of fruit and

vegetables

6109 T-shirts and other vests, knitted or crocheted 14.13 Manufacture of outerwear

HS - Export Products NACE (rev.2) - Sector

Sectoral approach

Export product Exporting Sector Export-to-

Turnover, %

Motor cars Sale of motor cars

Grape wines Manufacture of grape wine

Mineral waters Mineral and bottled waters

Hazelnuts and nuts Processing and preserving of fruits and vegetables

T-shirts and other vests Manufacture of wearing apparel

61.2%

71.6%

63.9%

75.6%

62.5%

Percentage share of export values in turnover of exporting sectors, 2015-2019 average

Sectoral approach

Corresponding NACE sectors (4-digit level)

Sale of motor vehicles

Manufacture of wine from grape

Production of mineral waters and other bottled waters

Processing and preserving of fruit and vegetables

Manufacture of wearing apparel

The share of employed women in total

number of employees, 2015-2019 average

20.4%

40.1%

26.0%

63.5%

87.0%

Sectoral approach

Average wages, GEL

0

500

1000

1500

2000

2500

3000

Males Females Males Females

2015 2019

Sale of motor vehicles

Manufacture of wine from grape

Production of mineral waters and other bottled waters

Processing and preserving of fruit and vegetables

Manufacture of wearing apparel

0.55

0.70

0.70

0.60

0.69

Average ratio of

women’s to men’s

wages, 2015-2019

All economic sectors 0.65

Sectoral approach

Shares of Women and Men in Total Employment by ISCO,

2017

1.6

4.0

1.5

2.5

2.3

1.4

8.8

1.8

17.2

5.6

3.1

2.3

2.4

3.5

3.4

7.5

5.2

25.9

Managers

Professionals

Technicians and associate

professionals

Clerks

Service and sales workers

Skilled agricultural, fishery,

and forestry workers

Craft and related trades

workers

Plant and machine operators

and assemblers

Elementary occupations

Manufacture of wine

from grape

1.6

8.0

0.8

6.4

1.2

8.0

1.6

3.5

6.9

0.3

17.3

0.1

9.8

23.9

12.2

3.5

1.1

1.5

5.5

4.6

0.2

0.2

15.4

0.1

37.1

4.3

1.4

2.1

4.9

1.0

0.1

5.4

2.9

12.2

2.7

24.8

4.8

2.0

2.3

0.2

1.0

15.8

3.3

13.2

2.0

13.4

4.5

4.5

5.4

Manufacture of

wearing apparel Sale of motor vehicle

1.4

1.3

3.1

1.3

0.5

43.7

7.6

29.8

1.6

0.4

1.0

0.3

0.9

3.3

2.1

1.8

Production of mineral

waters and other

bottled waters

Processing and

preserving of fruit

and vegetables

women

men

Sectoral approach

Gender Pay Gap in the Exporting Sectors by ISCO, 2017

49.7

25.8

82.8

5.4

49.2

26.2

41.2 36.2

-21.7

30.2

20.3

1.1

-3.5

54.6

35.8 33.1

15.6

65.6

28.2

-4.3

23.3

-11.0

-20.0

-78.6

44.5

-11.5

-2.3

34.4

-16.3

6.0

-14.0

69.3

17.8

52.5

24.7

-13.1

44.8

23.1 22.6

36.4

44.6

-100.0

-80.0

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

Sale of motor vehicles

Manufacture of wine from grape

Production of mineral waters and

other bottled waters

Processing and preserving of fruit

and vegetables

Manufacture of wearing apparel

Managers

Professionals

Technicians and associate professionals

Clerks

Service and sales workers

Skilled agricultural, fishery, and forestry workers Craft and related trades workers

Plant and machine operators and assemblers Elementary occupations

Total, sector

Microlinking approach

▪ Produces more accurate data

▪ Excludes non-trading companies

▪ Provides more detailed picture on gender inequalities

Microlinking approach

Total trade

value (USD

thousands)

Total exports

value (USD

millions)

Total imports

value (USD

thousands)

Share in total

trade value

(%)

Two-way

traders 36,403.5 13,247.1 23,156.4 70.5

Importers 15,541.8 15,541.8 28.5

Exporters 565.2 565.2 1.0

11,735

34,195

2,7362,232

7,040

377

90.4% 82.7%

91.0%

68.1%

0%

50%

100%

150%

200%

0

5000

10000

15000

20000

25000

30000

35000

40000

Two-way traders Importers Exporters

Number of trading companies linked to SBS survey data and their

value shares in total exports and imports in 2016-2020

Number of trading companies in 2016-2020

Number of trading companies linked to SBS survey data

Share of linked companies in total exports value, %

Share of linked companies in total imports value, %

General Characteristics of Trading Companies

Percentage shares of trading companies in 2016-2020 total imports and exports, by NACE rev. 2 sections 0 10 20 30 40 50 60 70

Agriculture, Forestry and Fishing

Mining and Quarrying

Manufacturing

Electricity, Gas, Steam and Air Conditioning Supply

Water Supply; Sewerage, Waste Management and Remediation Activities

Construction

Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles

Transportation and Storage

Accommodation and Food Service Activities

Information and Communication

Financial and Insurance Activities

Real Estate Activities

Professional, Scientific and Technical Activities

Administrative and Support Service Activities

Public Administration and Defence; Compulsory Social Security

Education

Human Health and Social Work Activities

Arts, Entertainment and Recreation

Other Service Activities

Activities of Extraterritorial Organisations

Unknown

Share in 2016-2020 imports (%) Share in 2016-2020 exports (%)

Employment

Number of employed persons (thousands) in two-way traders

and importers during 2016-2020, by sex

93.7

49.5

103.4

56.5

109.2

62.8

113.6

72.7

109.4

72.2

96.8

53.5

104.8

59.3

114.6

70.6

123.9

79.3

118.6

75.5

0

20

40

60

80

100

120

140

men women men women men women men women men women

2016 2017 2018 2019 2020

Two-way traders Importers

The women-to-men employment ratio among two-way

traders and importers (%) in 2016-2020

Average Monthly Wages and Wage Ratio

Two-way traders Importers

0.66

0.67

0.68

0.67

0.68

1,461.3 1,542.0

1,611.9

1,742.7 1,735.8

960.0 1,026.4

1,092.5 1,162.7 1,182.7

0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2016 2017 2018 2019 2020

Wage ratio men women

0.74 0.74

0.70

0.66

0.69

1,196.9 1,302.3

1,432.2 1,539.4 1,569.4

886.2 958.0 996.1 1,011.6

1,075.5

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0

200

400

600

800

1000

1200

1400

1600

1800

2016 2017 2018 2019 2020

Wage ratio men women

pay ratio - women/men

Employment and Wage Indicators

Women-to-men employment ratio among two-

way traders and importers, by skill levels

Gender pay gap among two-way

traders and importers, by skill levels

Ownership of trade companies

510

2469

103 272

8816

28806

1484 3063

1181

10835

731 863

0

5000

10000

15000

20000

25000

30000

35000

Woman owners Man owners Legal owners Unknown physical owners

Exporters Importers Two-way traders

COVID and key gender-in-trade indicators

39.0% 38.8%

38.9%

38.5% 38.5% 38.5%

40.5% 40.4% 40.5%

37.0%

37.5%

38.0%

38.5%

39.0%

39.5%

40.0%

40.5%

41.0%

importer two-way trader total

Women's share in employment

2019 2020 2021

33.5% 34.0% 33.8%

30.8% 31.2% 31.0%

28.4%

30.2% 29.5%

25.0%

26.0%

27.0%

28.0%

29.0%

30.0%

31.0%

32.0%

33.0%

34.0%

35.0%

importer two-way trader total

Gender pay gap

2019 2020 2021

Future steps

❑ Continue cooperation with the UNECE/UNCTAD which was initiated with the gender-in-trade pilot project

❑ Expand production of international trade statistics by introducing the gender-disaggregated indicators through micro linking

trade data with enterprise-level data from Geostat’s surveys

❑ Asses opportunities of other enterprise-level surveys to gain additional information regarding gender-in-trade statistics;

❑ Develop cooperation with governmental institutions and international partners to identify the policy needs in relation to gender

equality in international trade

Paata Shavishvili

Deputy Executive Director

National Statistics Office of Georgia (Geostat)

[email protected]

www.geostat.ge

Thank you!

19

Russian

Гендерные аспекты в торговле в Грузии

Паата Шавишвили Заместитель Исполнительного Директора

Национальное статистическое управление Грузии (Грузстат)

Основные результаты оценки

Общий подход

❑Отраслевой уровень – показатели гендерных аспектов в торговле были

проанализированы для 5 экспортных продуктов

4-значные коды ТН ВЭД для экспортируемых товаров, привязанные к соответствующим кодам

КДЕС отечественных производственных отраслей

❑ Микросвязывание доступных источников с данными по торговле

Почти 60 000 предприятий, которые осуществляли экспортную и/или импортную деятельность в

2016-2020 гг., были взяты за основу для увязки данных, не относящихся к торговле.

Источники данных

❑Таможенные данные Службы доходов Министерства финансов

торговля товарами

❑Статистический реестр предприятий

основные характеристики предприятия, данные о собственниках

❑Ежегодные обследования предприятий

данные о занятости и заработной плате в разбивке по полу; данные о

товарообороте

❑Структура обследования доходов

данные с разбивкой по полу о занятости и заработной плате по профессиям согласно МСКЗ с

одноразрядной детализацией

Сопоставление экспортных кодов

ТН ВЭД с кодами КДЕС

8703 Автомобили 45.1 Продажа моторных транспортных средств

2204 Вина виноградные натуральные 11.02 Производство вина из винограда

2201 Воды, включая природные или искусственные минеральные, газированные

11.07.1 Производство упакованных питьевых вод, включая минеральные воды

0802 Орехи лесные и прочие орехи 10.39 Прочие виды переработки и

консервирования фруктов и овощей

6109 Майки и прочие нательные фуфайки трикотажные машинного или ручного вязания

14.13 Производство верхней одежды

ТН ВЭД - Экспортная продукция КДЕС (ред. 2) - Сектор

Секторальный подход

Экспортный продукт Экспортирующий сектор

Доля экспорта в

общем объеме

товарооборота, %

Автомобили Продажа автомобилей

Виноградные вина Производство виноградных вин

Минеральные воды Минеральные и упакованные воды

Лесные орехи и прочие

орехи

Переработка и консервирование фруктов и

овощей

Майки и прочие

нательные фуфайки Производство одежды

61.2%

71.6%

63.9%

75.6%

62.5%

Процентная доля стоимостного объема экспорта в обороте экспортных секторов, в среднем

за 2015-2019 гг.

Секторальный подход

Соответствующие сектора КДЕС (с 4-

разрядной детализацией)

Продажа моторных транспортных средств

Производство вина из винограда

Производство минеральной воды и прочих упакованных питьевых вод

Переработка и консервирование фруктов и овощей

Производство одежды

Доля занятых женщин в общей

численности работающих, в среднем за

2015-2019 гг.

20.4%

40.1%

26.0%

63.5%

87.0%

Секторальный подход

Средняя заработная плата, лари

0

500

1000

1500

2000

2500

3000

Males Females Males Females

2015 2019

Sale of motor vehicles

Manufacture of wine from grape

Production of mineral waters and other bottled waters

Processing and preserving of fruit and vegetables

Manufacture of wearing apparel

0.55

0.70

0.70

0.60

0.69

Среднее соотношение

заработной платы

женщин и мужчин,

2015-2019 гг.

Все сектора экономики 0.65

Продажа моторных транспортных средств

Производство вина из винограда

Производство минеральной воды и прочих упакованных питьевых вод

Переработка и консервирование фруктов и овощей

Производство одежды МужчиныМужчины ЖенщиныЖенщины

Секторальный подход

Доли женщин и мужчин в общей занятости по МСКЗ, 2017 год

1.6

4.0

1.5

2.5

2.3

1.4

8.8

1.8

17.2

5.6

3.1

2.3

2.4

3.5

3.4

7.5

5.2

25.9

Руководители

Специалисты

Технический и

вспомогательный персонал

Служащие общего профиля

Работники сферы

обслуживания и торговли

Квалифицированные работники

сельского и лесного хозяйства,

рыбоводства и рыболовства

Квалифицированные рабочие

промышленности и рабочие

родственных занятий

Операторы и сборщики

промышленных установок и машин

Неквалифицированные

работники

Производство вина из

винограда

1.6

8.0

0.8

6.4

1.2

8.0

1.6

3.5

6.9

0.3

17.3

0.1

9.8

23.9

12.2

3.5

1.1

1.5

5.5

4.6

0.2

0.2

15.4

0.1

37.1

4.3

1.4

2.1

4.9

1.0

0.1

5.4

2.9

12.2

2.7

24.8

4.8

2.0

2.3

0.2

1.0

15.8

3.3

13.2

2.0

13.4

4.5

4.5

5.4

Производство

одежды

Продажа моторных

транспортных

средств

1.4

1.3

3.1

1.3

0.5

43.7

7.6

29.8

1.6

0.4

1.0

0.3

0.9

3.3

2.1

1.8

Производство

минеральной воды и

прочих упакованных

питьевых вод

Переработка и

консервирование

фруктов и овощей

женщины

мужчины

Секторальный подход

Гендерный разрыв в оплате труда в экспортных

секторах в разбивке по категориям МСКЗ, 2017 г.

49.7

25.8

82.8

5.4

49.2

26.2

41.2 36.2

-21.7

30.2

20.3

1.1

-3.5

54.6

35.8 33.1

15.6

65.6

28.2

-4.3

23.3

-11.0

-20.0

-78.6

44.5

-11.5

-2.3

34.4

-16.3

6.0

-14.0

69.3

17.8

52.5

24.7

-13.1

44.8

23.1 22.6

36.4

44.6

-100.0

-80.0

-60.0

-40.0

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

Sale of motor vehicles

Manufacture of wine from grape

Production of mineral waters and

other bottled waters

Processing and preserving of fruit

and vegetables

Manufacture of wearing apparel

Managers

Professionals

Technicians and associate professionals

Clerks

Service and sales workers

Skilled agricultural, fishery, and forestry workers Craft and related trades workers

Plant and machine operators and assemblers Elementary occupations

Total, sector

Руководители

Специалисты

Технический и вспомогательный персонал

Служащие общего профиля

Работники сферы обслуживания и торговли

Квалифицированные работники сельского и лесного хозяйства, рыбоводства и рыболовства Квалифицированные рабочие промышленности и родственных занятий Операторы и сборщики промышленных установок и машин Неквалифицированные работники

Всего, сектор

Продажа моторных транспортных средств

Производство вина из винограда

Производство минеральной воды и прочих упакованных питьевых вод

Переработка и консервирование

фруктов и овощей

Производство одежды

Метод микросвязывания

▪ Позволяет получить более точные данные

▪ Позволяет исключить неторговые компании

▪ Позволяет составить более подробную картину гендерного неравенства

Метод микросвязывания

Общий

стоимостной

объем

торговли

(тыс. долл..

США)

Общая

стоимость

экспорта

(млн. долл.

США)

Общая

стоимость

импорта

(тыс. долл..

США)

Доля в

общем

стоимостном

объеме

торговли (%)

Двухсторонн

ие торговые

компании

36,403.5 13,247.1 23,156.4 70.5

Импортеры 15,541.8 15,541.8 28.5

Экспортеры 565.2 565.2 1.0

11,735

34,195

2,7362,232

7,040

377

90.4% 82.7%

91.0%

68.1%

0%

50%

100%

150%

200%

0

5000

10000

15000

20000

25000

30000

35000

40000

Two-way traders Importers Exporters

Количество торговых компаний, связанных с данными

исследования SBS, и их стоимостные доли в общем объеме

экспорта и импорта в 2016-2020 гг.

Number of trading companies in 2016-2020

Number of trading companies linked to SBS survey data

Share of linked companies in total exports value, %

Share of linked companies in total imports value, %

Двухсторонние торговые компании Импортеры Экспортеры

Количество торговых компаний в 2-16-2020 гг. Количество торговых компаний, связанных с данными исследования SBS Доля связанных компаний в общем объеме экспорта, % Доля связанных компаний в общем объеме импорта, %

Общие характеристики торговых компаний

Процентные доли торговых компаний в 2016-2020 гг. в общем объеме импорта и экспорта, по разделам КДЕС ред. 2

0 10 20 30 40 50 60 70

Agriculture, Forestry and Fishing

Mining and Quarrying

Manufacturing

Electricity, Gas, Steam and Air Conditioning Supply

Water Supply; Sewerage, Waste Management and Remediation Activities

Construction

Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles

Transportation and Storage

Accommodation and Food Service Activities

Information and Communication

Financial and Insurance Activities

Real Estate Activities

Professional, Scientific and Technical Activities

Administrative and Support Service Activities

Public Administration and Defence; Compulsory Social Security

Education

Human Health and Social Work Activities

Arts, Entertainment and Recreation

Other Service Activities

Activities of Extraterritorial Organisations

Unknown

Share in 2016-2020 imports (%) Share in 2016-2020 exports (%)Доля в объеме импорта в 2016-2020 гг. (%) Доля в объеме экспорта в 2016-2020 гг. (%)

Сельское хозяйство, лесное хозяйство и рыболовство Горнодобывающая промышленность и разработка карьеров Обрабатывающие производства Электроэнергетика, газоснабжение, теплоснабжение и кондиционирование воздуха Водоснабжение; водоотведение, организация сбора и утилизация отходов, деятельность по ликвидации загрязнений Строительство Оптовая и розничная торговля; ремонт моторных транспортных средств и мотоциклов Транспортировка и хранение Гостиничный бизнес и общественное питание Информационно-коммуникационная деятельность Финансовая и страховая деятельность Деятельность в сфере недвижимости Профессиональная, научная и техническая деятельность Административные и вспомогательные услуги Государственное управление и оборона; обязательное социальное страхование Образование Деятельность в области здравоохранения и социальных услуг Искусство, развлечения и отдых Прочие виды услуг Деятельность экстерриториальных организаций

Неизвестно

Занятость

Численность занятых (тыс.) в двухсторонних торговых

компаниях и компаниях-импортерах в 2016-2020 гг., в

разбивке по полу

93.7

49.5

103.4

56.5

109.2

62.8

113.6

72.7

109.4

72.2

96.8

53.5

104.8

59.3

114.6

70.6

123.9

79.3

118.6

75.5

0

20

40

60

80

100

120

140

men women men women men women men women men women

2016 2017 2018 2019 2020

Two-way traders Importers

Соотношение женщин и мужчин, работающих в

двухсторонних торговых компаниях и компаниях-

импортерах (%) в 2016-2020 гг.

Двухсторонние торговые компании

Импортеры

Импортеры

Двухсторонние Торговые компании

Двухсторонние торговые компании

Импортеры Женщины МужчиныМужчиныМужчиныМужчины Женщины Женщины Женщины Женщины

Среднемесячная заработная плата и соотношение

заработной платы

Двусторонние торговые компании Импортеры

0.66

0.67

0.68

0.67

0.68

1,461.3 1,542.0

1,611.9

1,742.7 1,735.8

960.0 1,026.4

1,092.5 1,162.7 1,182.7

0.65

0.655

0.66

0.665

0.67

0.675

0.68

0.685

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2016 2017 2018 2019 2020

Wage ratio men womenСоотн. з/п

0.74 0.74

0.70

0.66

0.69

1,196.9 1,302.3

1,432.2 1,539.4 1,569.4

886.2 958.0 996.1 1,011.6

1,075.5

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0

200

400

600

800

1000

1200

1400

1600

1800

2016 2017 2018 2019 2020

Wage ratio men women

Соотношение заработной платы - женщины/мужчины

Соотн. з/п Мухчины

Мужчины Женщины Женщины

Показатели занятости и заработной платы

Соотношение занятости женщин и мужчин в

двусторонних торговых компаниях и

компаниях-импортерах в разбивке по

уровням квалификации

Гендерный разрыв оплате труда в

двусторонних торговых компаниях и

компаниях-импортерах в разбивке по

уровням квалификации

Двухсторонние торговые компании

Двухсторонние торговые компании

Двухсторонние торговые компании

Двухсторонние торговые компании

Импортеры

Импортеры

Импортеры

Импортеры

Руководители Руководители

Руководители

Высококвалифиц. работники

Высококвалифиц. работники

Низкоквалифиц. работники

Низкоквалифиц. работники

Среднеквалифиц. работники

Среднеквалифиц. работники

Среднеквалифиц. работники

Низкоквалифиц. работники

Среднеквалифиц. работники

Собственники торговых компаний

510

2469

103 272

8816

28806

1484 3063

1181

10835

731 863

0

5000

10000

15000

20000

25000

30000

35000

Woman owners Man owners Legal owners Unknown physical owners

Exporters Importers Two-way traders

Импортеры

Собственнки-мужчины Законные собственники Неизвестные физические лица-собственники Собственнки-женщины

Двухсторонние торговые компании

Экспортеры

COVID и ключевые показатели гендерных

аспектов в торговле

39.0% 38.8%

38.9%

38.5% 38.5% 38.5%

40.5% 40.4% 40.5%

37.0%

37.5%

38.0%

38.5%

39.0%

39.5%

40.0%

40.5%

41.0%

importer two-way trader total

Доля женщин в общей занятости

2019 2020 2021

Импортер Всего

33.5% 34.0% 33.8%

30.8% 31.2% 31.0%

28.4%

30.2% 29.5%

25.0%

26.0%

27.0%

28.0%

29.0%

30.0%

31.0%

32.0%

33.0%

34.0%

35.0%

importer two-way trader total

Гендерный разрыв в оплате труда

2019 2020 2021

Импортер Двухсторонняя торговая компания

Двухсторонняя торговая компания

Всего

Дальнейшие шаги

❑ Продолжение сотрудничества с ЕЭК ООН/ЮНКТАД, которое было начато в рамках пилотного проекта по учету

гендерных аспектов в торговле.

❑ Расширение подготовки статистики международной торговли за счет введения показателей с разбивкой по гендерному

признаку путем микросвязывания данных по торговле с данными на уровне предприятий, полученными из

обследований Грузстата.

❑ Оценка возможностей других обследований, проводимых на уровне предприятий, для получения дополнительной

информации, относящейся к гендерной статистике в области торговли;

❑ Развитие сотрудничества с государственными учреждениями и международными партнерами в целях определения

страгегических потребностей в отношении обеспечения гендерного равенства в международной торговле.

Паата Шавишвили

Заместитель Исполнительного Директора

Национальное статистическое управление Грузии (Грузстат)

[email protected]

www.geostat.ge

Спасибо за внимание!

19

UNECE supports Georgia to strengthen food and energy resilience

Significant energy price increases arising from the war in Ukraine are having a negative impact on food production capabilities and costs in Georgia, especially in rural areas. This threatens to weaken the competitiveness of producers and increase their vulnerability to poverty. Reducing energy consumption by improving the efficiency of food production can help to reduce these pressures, while enabling producers and processors to ensure food safety and reduce their carbon footprint. 

GSBPM Sectoral Review - Georgia Report

Languages and translations
English

Sector Review of the Implementation of the Generic Statistical Business Process Model

(GSBPM) in Georgia

Final Report March 2023

Introduction There is a strong trend in official statistics to standardise processes and centralise similar statistical functions (e.g. dissemination) within national statistical offices (NSOs). This is done to realise efficiency gains, reduce risk and increase quality, especially where resources are scarce. The Generic Statistical Business Process Model (GSBPM) can help organisations to think about how to achieve this through moving towards a more process-oriented organisation structure. In February 2023, an international team of experts convened by the United Nations Economic Commission for Europe (UNECE) conducted a Sector Review of the implementation of the GSBPM in Georgia, with the aim of producing a roadmap for organisational change. This review was undertaken at the request of, and in partnership with, Geostat, the National Statistics Office of Georgia, in the context of the National Strategy for the Development of Statistics in Georgia1. This report contains the observations and recommendations of the international experts and has been agreed with the management of Geostat. The review team consisted of Mr Zoltan Vereczkei (Central Statistical Office of Hungary), Mr Carlo Vaccari (Independent consultant, Italy), Ms InKyung Choi and Mr Steven Vale (UNECE). The review was conducted in cooperation with the managers and staff of Geostat. Its findings are based on discussions and presentations during a mission of the review team to the Geostat office in Tbilisi, which took place on 20-22 February 2023. The review team was impressed with the work done so far to implement the GSBPM in Geostat, and the willingness of staff to consider new ideas. The current strategy provides a good basis for modernisation, and this theme will be further developed in the next strategy, which will be elaborated in the coming months. The approach Geostat is taking is in line with international good practices, including those promoted by the UNECE High-Level Group for the Modernisation of Official Statistics. The review team worked with Geostat managers and staff to prepare recommendations for next steps in the implementation of the GSBPM and the move towards a more process- oriented organisation structure, as well as a draft roadmap for their implementation. The recommendations are elaborated in Chapters 1 to 3, and the roadmap is presented in Chapter 4. The collaboration between the review team and the staff of Geostat was very positive and constructive throughout all phases of the work. The review team would like to thank the management and staff of Geostat for their full and active collaboration in the conduct of this Sector Review and would like to wish them success with their modernisation journey.

1 https://www.geostat.ge/en/modules/categories/630/strategy-for-the-development-of-statistics

Chapter 1: Awareness raising and communication Modernisation, appropriate organisational structure and capability to manage change are essential for national statistical offices to meet the challenges facing official statistics. They should not be seen as one-off exercises, but rather as the development of a culture of change, a culture that helps statistical offices to become more flexible and adaptable to react to new challenges. For modernisation to succeed, it is vital to have the support and active involvement of staff at all levels. However, the natural reaction for many people when faced with change is often suspicion and fear. This means that raising awareness and communicating the reasons and plans for change is vital. The GSBPM and its extension, the Generic Activity Model for Statistical Organisations (GAMSO), have been proven to support NSOs in their move towards process-oriented statistical production. They support the implementation of standard tools and methods to improve efficiency. Experience in various countries has shown that this allows resources to be freed to support new activities or to strengthen existing ones that add higher value to the outputs of the NSO. Allowing staff to focus on these activities can improve job satisfaction and staff retention. Recommendations 1.1 Conduct basic training and promotion on GSBPM and its role

• Geostat should produce promotional materials to help raise staff awareness about GSBPM.

• Geostat should conduct basic training on GSBPM, one course for the staff in general and a more extensive course for those who will be involved in the change management process as they will require more in-depth knowledge about the model to guide the changes. The training can be conducted by external experts at first, or by just asking staff to follow existing GSBPM training resources which can be found on the UNECE GSBPM wiki (e.g., YouTube video on introduction to GSBPM). However, in the long run, it is important that Geostat grows internal experts on GSBPM who can assist and guide the process for documentation (see Chapter 2) as well as centralisation (see Chapter 3). The initial focus should therefore be to “train the trainers”, to develop these internal Geostat experts.

• The training should not be done for the sake of learning about the GSBPM. It is important to provide the “big picture” and to emphasize the rationale and reasoning behind why training on GSBPM is needed, that it is a tool for the transition to a process-oriented organisation. Internal communication on the model should also highlight this point so that staff learning about GSBPM are also exposed to the broad vision where the organisation is heading toward.

• Geostat should create a centralised repository in the intranet where all resources about GSBPM, including training and awareness raising materials, can be stored. This repository should serve as the Geostat knowledge base on GSBPM.

1.2 Translate GSBPM into Georgian • Geostat should produce an agreed translation of the GSBPM into Georgian, to

ensure the use of standard terminology and to better spread knowledge about the model within Geostat. Given that the transition to a process-oriented organisation concerns all parts of Geostat (statistical production and corporate support such as IT and HR), GSBPM in Georgian will help to ensure a broad and common understanding of the model across Geostat, which is a precondition for many activities that will follow.

• Geostat should store the agreed translation in the centralised repository on the intranet mentioned in the 4th bullet point of Recommendation 1.1.

1.3 Get to know GAMSO and produce a Georgian translation

• Geostat has set the goal to introduce a process-oriented organisation. In order to do this, based on the experience of countries that have already implemented similar organisational structures, GSBPM will not be enough. Therefore, Geostat should also take a look at GAMSO, produce a Georgian translation of the model, and make it available to all staff on the intranet. As demonstrated during the mission, GAMSO can help Geostat to understand the role of corporate support areas in the statistical organisation (e.g. legal, methodology, IT, finance, HR) and what role these areas play in a future process-oriented organisation.

Chapter 2: Documentation Many national statistical offices that have successfully used the GSBPM and GAMSO to help them move towards a more process-oriented approach to statistical production have started by documenting existing process. Process documentation should not be seen as a goal in itself, but as a way of understanding the starting point for modernising statistical production. Documentation should use templates that facilitate the wide re-use of text and avoid the duplication of work. In this way, documentation can be seen as an investment that will reduce efforts in the future. Managing the information in a database format can be useful as it allows different reports to be generated for different users or purposes, based on selections from standard content, e.g. quality reports for international organisations, or lists of processes that use certain software or methods. Recommendations 2.1 Analyse the current state of Geostat

• Geostat should carry out an analysis, focusing on the current state in Geostat using GSBPM and GAMSO as a reference: What processes and activities are present in the current organisation, who is responsible for what etc.

2.2 Conduct skills mapping and develop HR strategy

• Geostat should carry out a skills audit to prepare for a process-oriented organisation and the transition period, by identifying the skills Geostat currently has, and those it will need in the future. This will help to identify gaps between the current and the future situation. This could start in the pilot units (Recommendation 3.3), involving the internal group (Recommendation 3.1) and HR. With the transition to a process- oriented organisation, each person becomes more specialised (as opposed to an individual carrying out a little bit of every function).

• Geostat should develop a HR strategy to develop the missing skills through recruitment, re-training of existing staff, or a mixture of both.

2.3 Develop the intranet further

• Geostat should continue the work started to establish an intranet and make it easily available to all staff. The intranet is typically a good first access point for information internally to the NSO staff.

• As mentioned in Recommendations 1.1, 1.2 and 1.3, Geostat should put all relevant documents on the intranet, including process descriptions, the Georgian translations of the GSBPM and GAMSO, any future documentation (training material, self- assessment material, future descriptions etc.) they produce, as well as materials from all international projects that Geostat is involved in.

• Geostat should consider tagging documents on the intranet according to the GSBPM to make their discovery and use easier, and to signal their importance. Tagging can also go deeper: tagged documents using the GSBPM phases or even sub-processes will enable staff to easily find and link information to the GSBPM.

2.4 Define IT standards

• Geostat should define and declare what IT solutions they intend to use as IT standards for Geostat as a whole. Some examples: database structures or standard tools for Database Management System or for programming languages and for statistical packages (the “R” package is now a standard in many NSOs). These standards must be a “constraint” not only for internal developments but also for donors and international projects, preventing the IT unit from being forced to maintain and support too many software platforms. Identifying these IT standards will be important in the future to have an efficient process-oriented organisation in place and further standardise existing IT solutions and introduce new ones. Geostat should gradually abandon the use of Microsoft Office products such as Excel and Access for the production of official statistics, and introduce more professional tools.

2.5 Start building a metadata system based on the information collected

• Geostat collects and stores a lot of information about processes already, and should continue and complete the intended descriptive exercise. However, it will give the organisation more value if Geostat organises this information into a very first early version of a metadata system. This is a common practice in most process-oriented organisations and will be of great help to ensure smooth operation of process flows in the new organisation.

• As a first step, Geostat should organise the information they manage into databases and not store it only in Excel sheets. This will also help Geostat to prepare to meet future needs related to metadata structures and their management, such as the introduction of the Single Integrated Metadata Structure (SIMS), to be more in line with the requirements of the European Statistical System.

Chapter 3 – Organisation Moving to a process-oriented organisation has been shown in various countries to improve the efficiency of the NSO. Geostat has already started along this path by centralising dissemination and communication activities in the Department of International and Public Relations some years ago. A major staffing challenge in the coming years will be how to redeploy the large number of posts that are currently dedicated to data collection activities in the regional offices of Geostat. This is a natural consequence of the move from collecting data on paper by interviewers, towards more electronic data collection (including by Internet) and the greater use of administrative and other non-statistical data sources. Logically, the posts that are no longer needed for data collection could be re-used to help to improve quality, produce new outputs, or any other activities that add value to Geostat’s work. It is important to note that any organisation structure needs to evolve over time to meet new user needs and take advantage of new opportunities. The current lack of space in the Geostat headquarters building in Tbilisi can be seen as a constraint on redeploying posts to support activities that currently only take place in that building. However, the COVID-19 pandemic has shown the possibilities of remote working, and it may be possible for some staff to work on new tasks whilst still being physically based in regional offices. The sector review team and Geostat staff discussed the most likely next steps and identified possibilities to improve efficiency by consolidating data collection, as well as a further consolidation of methodological support activities. There are several points to take into account when considering whether to consolidate an activity that is currently spread amongst several different organisational units. These can include:

• Evaluating changes in the external environment (e.g. new technologies, new administrative or other data sources)

• Assessing risks and making plans for managing them • Identifying the different capabilities needed, not just the staff and their skills, but all

the other institutional capabilities that should be combined to ensure a successful transition. The diagram below showing the seven dimensions of statistical capabilities is taken from the UNECE Statistical Capacity Development Strategy2, and may help with this

• Identifying the steps needed for capability improvement • Setting quality guidelines and criteria. The GSBPM quality indicators3 may help with

this • Implementing and monitoring the results.

2 https://unece.org/sites/default/files/2020-11/Statistical%20capacity%20development%20strategy%20final.pdf 3 https://statswiki.unece.org/display/GSBPM/Quality+Indicators

The seven dimensions of statistical capabilities

In an organisation based on statistical subject-matter domains, most production activities for one domain are carried out within one organisational unit. On the contrary, in a process- oriented organisation with centralised functions, production should be carried out in collaboration and coordination between multiple units (e.g. subject-domain, data collection unit, IT unit). This requires the establishment of formal agreements (sometimes referred to as service-level agreements or SLAs) to define who is responsible for what and to ensure the smooth flows of data and services between units, at the right time, with an agreed level of quality. Recommendations 3.1 Establish change champion(s) and a small internal group

• Geostat should identify one or more change champions amongst mid and senior managers. They should be mandated by the Executive Director to lead the change process across Geostat.

• Geostat should create a small internal group of people who are open to change from different parts of the organisation. They should be people who understand what the process-oriented organisation means. They should drive the discussions about change, bringing in all necessary skills and competencies from across the organisation, and keep the change process going in the right direction.

3.2 Change manager to be mandated

• Geostat should find and mandate an independent change manager to help the top management in the whole transition process of changing the organisation. This change manager should have good knowledge of the Georgian public administration system and Geostat, as well as being an excellent change manager. Ideally, an external change manager can bring in new skills and knowledge on how to manage change that can be as crucial for a successful transition as good knowledge of Geostat.

3.3 Consolidate data collection – step by step • Geostat should centralise the data collection functions across the organisation. Even

in the era of electronic data collection, there is a strong potential in centralising services such as data collection. This will open up new modernisation directions that will result in further efficiency gains and higher quality, such as using multimode design, using more administrative data and other data sources, introduction of new methods in cooperation with the methodology team (such as sampling or survey- methodology), upskilling field interviewers, etc.

• In consolidating data collection, Geostat should consider a step-by-step approach, perhaps starting with a small sub-set of subject-matter domains (for example, agriculture, business, social). This should be seen as a pilot to test the approach and understand the benefits before it is extended to the whole organisation.

3.4 Consider consolidating methodology

• Geostat should consider greater consolidation of methodology functions This can improve efficiency and value added. There is a clear trend towards centralised methodology support in most NSOs having process-oriented organisations.

• As a first step Geostat could try a pilot focusing on data collection-related methodologies, such as sampling or survey-methodology, to see the benefits.

3.5 Introduce and use SLAs

• Geostat should consider introducing SLAs (or similar agreements), to help to clearly define the borders between units working on different processes (for example between data collection and subject-matter domains). SLAs can be used to define quality criteria (including when the output of one team is accepted by the next) and clarify responsibilities.

• SLAs should be supported by a software tool to manage the service request and provision, keeping track of different requests and replies, allowing an analysis of efficiency and bottlenecks.

3.6 Set up an international advisory support group

• Geostat should consider setting up an international group of experts to provide advice and support during the transition period. This group could review the progress periodically and advise on next steps or how to solve any issues encountered, based on their experiences.

Chapter 4: Moving forwards – A roadmap The review team identified a series of actions, some of which are inter-dependent. Based on experiences in other NSOs, these actions could take 3-4 years to complete. They can be grouped as follows:

First 12-18 Months - Foundations • Training on GSBPM / GAMSO / process-based organisation (Recommendation 1.1) • Agreed translations of GSBPM and GAMSO (Recommendations 1.2 and 1.3) • Analysis of the current state of Geostat (Recommendation 2.1) • Skills mapping and HR strategy (Recommendation 2.2) • Define IT standards (Recommendation 2.4) • Initial design for intranet and metadata system (first parts of Recommendations 2.3

and 2.5) • Set up and train group of change champions (Recommendation 3.1) • Appoint change manager (Recommendation 3.2) • Set up international advisory support group (Recommendation 3.6)

Next 24-30 Months - Implementation

• Implement intranet and metadata system (second parts of Recommendations 2.3 and 2.5)

• Consolidate data collection – step by step (Recommendation 3.3) • Consolidate methodology (Recommendation 3.4) • Set up service level agreements (or similar) (Recommendation 3.5)

The review team notes that Geostat is applying for a “twinning” project with a European Union country. Such projects can be very useful, and, in this case, it will be important to include support for at least some of the above steps in that project, so that Geostat can benefit from the experience of the partner NSO. There are likely to also be other opportunities (like IPA projects) for international support in the context of Georgia’s European Union accession process. The review team wishes Geostat success in implementing the above roadmap and in their further steps to modernise official statistics in Georgia. The Georgian experiences will definitely be of interest to other countries that are at a similar point, or further behind on the modernisation journey. UNECE intends to bring together representatives of Geostat and the NSOs of Armenia and Moldova (possibly others) later in 2023, to share ideas and experiences. The review team would also encourage Geostat to present progress and experiences at relevant international events, including the UNECE ModernStats World Workshops. The members of the review team also remain available for follow-up discussions by e-mail and on-line meetings, and are willing to provide further advice and support with the implementation of the recommendations and roadmap.

Annex: Resources

• GSBPM documentation and supporting materials o Maturity Model o Implementation check list

• GAMSO documentation and supporting materials • Sector Review of GAMSO Implementation in Armenia • Mapping of Armstat activities to GAMSO (Note: This is not a public document, but

has been shared with Geostat with the permission of Armstat) • Information flow within GSBPM using GSIM: diagram and full report • Documentation using GSBPM (Excel template) • GSBPM “tasks” (activities at more detailed level than sub-process) that could be

useful for documentation • Quality indicators through GSBPM: in GSBPM clickable (at the bottom of middle

box), full report • Geoinformation in GSBPM • Awesome official statistics software list (github repository for R packages for official

statistics) GSBPM Experiences from other organisations (from GSBPM Resource Repository)

• Slovenia (2022): GSBPM as a Backbone of the Internal Documentation System • Portugal (2019): Describing the Statistical Business Process using the GSBPM as a

reference (for Internal planning and management IT system) • New Zealand (2018): GSBPM: 12+ years of implementation! • IMF (2022): GSBPM Implementation: Experience from the IMF (also see: 2019: IMF

and the GSBPM: Progress So far) • Croatia (2022): Instructions on Quality according to the Generic Statistical Business

Process Model (GSBPM)

  • Introduction
    • Chapter 1: Awareness raising and communication
    • Chapter 2: Documentation

Joint Forest Sector Questionnaire - 2020 - National Reply - Georgia

Reply as received from country.

Languages and translations
English

Manual

Changes from JQ2019 to JQ2020   Below is a complete list of all changes to JQ2020. Items in bold are significant changes.   1) Definitions a) Included additional products under definition of production b) Changed definition of veneer to exclude veneer used for plywood (item 7). This reverts to the pre-2017 definition. c) Removed reference to particle board as an aggregate (item 8.2). d) Added fine OSB to definition of OSB (item 8.2.1). 2) Questionnaires a) Changed representation of unit “mt” to “t” (metric tonnes). b) Cubic metre (m3) referenced as solid volume (in accordance with definitions). c) Included m3ub (underbark) for roundwood on ITTO 2. d) ECE-EU i) Removed the “ex” (partial) HS codes ii) Removed item 1.2.C.Other (3 rows) iii) Restored data checks between this questionnaire and JQ2

JQ1|Primary Products|Production

Country: Georgia Date: 21.05.2021 Country: Georgia
Name of Official responsible for reply:
Official Address (in full):
FOREST SECTOR QUESTIONNAIRE JQ1 30 Tsotne Dadiani Str, Tbilisi 0180, Georgia
Industrial Roundwood Balance
PRIMARY PRODUCTS Telephone: Fax: This table highlights discrepancies between items and sub-items. Please verify your data for any non-zero figure! Discrepancies
Removals and Production E-mail: test for good numbers, missing number, bad number, negative number
51 51
Product Product Unit 2019 2020 Product Product Unit 2019 2020 2019 2020 % change Conversion factors
Code Quantity Quantity Code Quantity Quantity Roundwood Industrial roundwood availability
McCusker 14/6/07: McCusker 14/6/07: minus 1.2.3 (other ind. RW) production
Missing data Missing data missing data m3 of wood in m3 or mt of product
REMOVALS OF ROUNDWOOD (WOOD IN THE ROUGH) REMOVALS OF ROUNDWOOD (WOOD IN THE ROUGH) Recovered wood used in particle board missing data missing data missing data Solid wood equivalent
1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub 585 551 1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub 0 0 Solid Wood Demand agglomerate production missing data missing data missing data 2.4
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub 407 359 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub 0 0 Sawnwood production 58 34 -41% 1
1.1.C Coniferous 1000 m3ub 80 74 1.1.C Coniferous 1000 m3ub veneer production Missing data Missing data missing data 1
1.1.NC Non-Coniferous 1000 m3ub 327 285 1.1.NC Non-Coniferous 1000 m3ub plywood production Missing data Missing data missing data 1
1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub 178 191 1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub 0 0 particle board production (incl OSB) missing data missing data missing data 1.58
1.2.C Coniferous 1000 m3ub 101 135 1.2.C Coniferous 1000 m3ub ERROR:#VALUE! ERROR:#VALUE! fibreboard production missing data missing data missing data 1.8
1.2.NC Non-Coniferous 1000 m3ub 78 56 1.2.NC Non-Coniferous 1000 m3ub ERROR:#VALUE! ERROR:#VALUE! mechanical/semi-chemical pulp production missing data missing data missing data 2.5
1.2.NC.T of which: Tropical 1000 m3ub 0 0 1.2.NC.T of which: Tropical 1000 m3ub chemical pulp production missing data missing data missing data 4.9
1.2.1 SAWLOGS AND VENEER LOGS 1000 m3ub 1.2.1 SAWLOGS AND VENEER LOGS 1000 m3ub ERROR:#VALUE! ERROR:#VALUE! dissolving pulp production missing data missing data missing data 5.7
1.2.1.C Coniferous 1000 m3ub 1.2.1.C Coniferous 1000 m3ub Availability Solid Wood Demand missing data missing data missing data
1.2.1.NC Non-Coniferous 1000 m3ub 1.2.1.NC Non-Coniferous 1000 m3ub Difference (roundwood-demand) missing data missing data missing data positive = surplus
1.2.2 PULPWOOD, ROUND AND SPLIT (INCLUDING WOOD FOR PARTICLE BOARD, OSB AND FIBREBOARD) 1000 m3ub 1.2.2 PULPWOOD, ROUND AND SPLIT (INCLUDING WOOD FOR PARTICLE BOARD, OSB AND FIBREBOARD) 1000 m3ub ERROR:#VALUE! ERROR:#VALUE! gap (demand/availability) missing data missing data Negative number means not enough roundwood available
1.2.2.C Coniferous 1000 m3ub 1.2.2.C Coniferous 1000 m3ub Positive number means more roundwood available than demanded
1.2.2.NC Non-Coniferous 1000 m3ub 1.2.2.NC Non-Coniferous 1000 m3ub
1.2.3 OTHER INDUSTRIAL ROUNDWOOD 1000 m3ub 1.2.3 OTHER INDUSTRIAL ROUNDWOOD 1000 m3ub ERROR:#VALUE! ERROR:#VALUE!
1.2.3.C Coniferous 1000 m3ub 1.2.3.C Coniferous 1000 m3ub % of particle board that is from recovered wood 35%
1.2.3.NC Non-Coniferous 1000 m3ub 1.2.3.NC Non-Coniferous 1000 m3ub share of agglomerates produced from industrial roundwood residues 100%
PRODUCTION PRODUCTION usable industrial roundwood - amount of roundwood that is used, remainder leaves industry 98.5%
2 WOOD CHARCOAL 1000 t 2 WOOD CHARCOAL 1000 t
3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 ERROR:#VALUE! ERROR:#VALUE!
3.1 WOOD CHIPS AND PARTICLES 1000 m3 3.1 WOOD CHIPS AND PARTICLES 1000 m3
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3
4 RECOVERED POST-CONSUMER WOOD 1000 t 4 RECOVERED POST-CONSUMER WOOD 1000 t
5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t 5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t ERROR:#VALUE! ERROR:#VALUE!
5.1 WOOD PELLETS 1000 t 5.1 WOOD PELLETS 1000 t
5.2 OTHER AGGLOMERATES 1000 t 5.2 OTHER AGGLOMERATES 1000 t
6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 58 34 6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 ERROR:#VALUE! ERROR:#VALUE!
6.C Coniferous 1000 m3 ... ... 6.C Coniferous 1000 m3
6.NC Non-Coniferous 1000 m3 ... ... 6.NC Non-Coniferous 1000 m3
6.NC.T of which: Tropical 1000 m3 ... ... 6.NC.T of which: Tropical 1000 m3
7 VENEER SHEETS 1000 m3 7 VENEER SHEETS 1000 m3 ERROR:#VALUE! ERROR:#VALUE!
7.C Coniferous 1000 m3 7.C Coniferous 1000 m3
7.NC Non-Coniferous 1000 m3 7.NC Non-Coniferous 1000 m3
7.NC.T of which: Tropical 1000 m3 7.NC.T of which: Tropical 1000 m3
8 WOOD-BASED PANELS 1000 m3 8 WOOD-BASED PANELS 1000 m3 ERROR:#VALUE! ERROR:#VALUE!
8.1 PLYWOOD 1000 m3 8.1 PLYWOOD 1000 m3 ERROR:#VALUE! ERROR:#VALUE!
8.1.C Coniferous 1000 m3 8.1.C Coniferous 1000 m3
8.1.NC Non-Coniferous 1000 m3 8.1.NC Non-Coniferous 1000 m3
8.1.NC.T of which: Tropical 1000 m3 8.1.NC.T of which: Tropical 1000 m3
8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3 8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3
8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3
8.3 FIBREBOARD 1000 m3 8.3 FIBREBOARD 1000 m3 ERROR:#VALUE! ERROR:#VALUE!
8.3.1 HARDBOARD 1000 m3 8.3.1 HARDBOARD 1000 m3
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3
8.3.3 OTHER FIBREBOARD 1000 m3 8.3.3 OTHER FIBREBOARD 1000 m3
9 WOOD PULP 1000 t 9 WOOD PULP 1000 t ERROR:#VALUE! ERROR:#VALUE!
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t
9.2 CHEMICAL WOOD PULP 1000 t 9.2 CHEMICAL WOOD PULP 1000 t ERROR:#VALUE! ERROR:#VALUE!
9.2.1 SULPHATE PULP 1000 t 9.2.1 SULPHATE PULP 1000 t
9.2.1.1 of which: BLEACHED 1000 t 9.2.1.1 of which: BLEACHED 1000 t
9.2.2 SULPHITE PULP 1000 t 9.2.2 SULPHITE PULP 1000 t
9.3 DISSOLVING GRADES 1000 t 9.3 DISSOLVING GRADES 1000 t
10 OTHER PULP 1000 t ... ... 10 OTHER PULP 1000 t ERROR:#VALUE! ERROR:#VALUE!
10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t ... ... 10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t
10.2 RECOVERED FIBRE PULP 1000 t ... ... 10.2 RECOVERED FIBRE PULP 1000 t
11 RECOVERED PAPER 1000 t ... ... 11 RECOVERED PAPER 1000 t
12 PAPER AND PAPERBOARD 1000 t +++ +++ 12 PAPER AND PAPERBOARD 1000 t ERROR:#VALUE! ERROR:#VALUE!
12.1 GRAPHIC PAPERS 1000 t ... ... 12.1 GRAPHIC PAPERS 1000 t ERROR:#VALUE! ERROR:#VALUE!
12.1.1 NEWSPRINT 1000 t ... ... 12.1.1 NEWSPRINT 1000 t
12.1.2 UNCOATED MECHANICAL 1000 t ... ... 12.1.2 UNCOATED MECHANICAL 1000 t
12.1.3 UNCOATED WOODFREE 1000 t ... ... 12.1.3 UNCOATED WOODFREE 1000 t
12.1.4 COATED PAPERS 1000 t ... ... 12.1.4 COATED PAPERS 1000 t
12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t 14 15 12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t
12.3 PACKAGING MATERIALS 1000 t 33,821 37,684* 12.3 PACKAGING MATERIALS 1000 t ERROR:#VALUE! ERROR:#VALUE!
12.3.1 CASE MATERIALS 1000 t ... ... 12.3.1 CASE MATERIALS 1000 t
12.3.2 CARTONBOARD 1000 t ... ... 12.3.2 CARTONBOARD 1000 t
12.3.3 WRAPPING PAPERS 1000 t ... ... 12.3.3 WRAPPING PAPERS 1000 t
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t ... ... 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t
12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t ... ... 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t
m3 = cubic metres solid volume
m3ub = cubic metres solid volume underbark (i.e. excluding bark)
t = metric tonnes
The data for 2020 is preliminary
* Packaging materials is given in 1000 m2

JQ2 | Primary Products | Trade

FOREST SECTOR QUESTIONNAIRE JQ2 Country: Georgia Date: 21.05.2021
Name of Official responsible for reply: National Statistics Office of Georgia
PRIMARY PRODUCTS Official Address (in full): 30, Tsotne Dadiani Street 0180 Tbilisi, Georgia This table highlights discrepancies between production and trade. For any negative number, indicating greater net exports than production, please verify your data!
Trade Telephone: 2 36 72 10 (315) Fax: This table highlights discrepancies between items and sub-items. Please verify your data for any non-zero figure!
E-mail: Country: Georgia Country: Georgia
Specify Currency and Unit of Value (e.g.:1000 US $): 1000 USD Trade Discrepancies
Product Unit of I M P O R T E X P O R T Product I M P O R T E X P O R T Product Apparent Consumption
code Product* quantity 2019 2020 2019 2020 code 2019 2020 2019 2020 code 2019 2020
Quantity Tons Value Quantity Tons Value Quantity Tons Value Quantity Tons Value Quantity Value Quantity Value Quantity Value Quantity Value
1 ROUNDWOOD (WOOD IN THE ROUGH) Tons -0 24,180.5 5,025.5 -0 15,065.3 3,091.7 -0 25.3 0.3 -0 138.0 27.0 1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub -37 0 -26.70552894 0 0 0 -116.15 0 1 ROUNDWOOD (WOOD IN THE ROUGH) 1000 m3ub NT 0 NT 0
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) Tons -0 41.7 9.6 -0 -0 -0 -0 25.3 0.3 -0 64.7 4.8 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub 0 9.632667358 0 0 0 0.253 0 4.84 1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 1000 m3ub NT 0 NT 0
1.1.C Coniferous Tons -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 1.1.C Coniferous 1000 m3ub 1.1.C Coniferous 1000 m3ub NT 0 NT 0
1.1.NC Non-Coniferous Tons -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 1.1.NC Non-Coniferous 1000 m3ub 1.1.NC Non-Coniferous 1000 m3ub NT 0 NT 0
1.2 INDUSTRIAL ROUNDWOOD 1000 m3 37.5 24,138.7 5,015.9 26.7 15,065.3 3,091.7 -0 -0 -0 116.2 73.3 22.2 1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub 15 2059.75965 16.05314894 1839.41989 0 0 0 0 1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub NT -37.49454628 NT 89.44447106
1.2.C Coniferous 1000 m3 22.9 14,594.9 2,956.1 9.0 5,704.4 1,060.9 -0 -0 -0 116.2 73.3 22.2 1.2.C Coniferous 1000 m3ub 1.2.C Coniferous 1000 m3ub NT -22.92785628 NT 107.18573
1.2.NC Non-Coniferous 1000 m3 -0 -0 -0 1.7 788.2 191.4 -0 -0 -0 -0 -0 -0 1.2.NC Non-Coniferous 1000 m3ub 1.2.NC Non-Coniferous 1000 m3ub NT 0 NT -1.68811
1.2.NC.T of which: Tropical 1000 m3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 1.2.NC.T of which: Tropical 1000 m3ub 1.2.NC.T of which: Tropical 1000 m3ub NT 0 NT 0
2 WOOD CHARCOAL Tons -0 64.2 98.6 -0 52.7 60.4 -0 145.2 75.4 -0 -0 -0 2 WOOD CHARCOAL 1000 t 2 WOOD CHARCOAL 1000 t NT 0 NT 0
3 WOOD CHIPS, PARTICLES AND RESIDUES Tons -0 233.4 365.3 -0 256.5 307.3 -0 14.2 14.9 -0 0.2 1.6 3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 0 0 0 0 0 0 0 0 3 WOOD CHIPS, PARTICLES AND RESIDUES 1000 m3 NT 0 NT 0
3.1 WOOD CHIPS AND PARTICLES Tons -0 233.4 365.3 -0 256.5 307.3 -0 14.2 14.9 -0 0.2 1.6 3.1 WOOD CHIPS AND PARTICLES 1000 m3 3.1 WOOD CHIPS AND PARTICLES 1000 m3 NT 0 NT 0
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) Tons -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) 1000 m3 NT 0 NT 0
4 RECOVERED POST-CONSUMER WOOD Tons -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4 RECOVERED POST-CONSUMER WOOD 1000 t 4 RECOVERED POST-CONSUMER WOOD 1000 t NT 0 NT 0
5 WOOD PELLETS AND OTHER AGGLOMERATES Tons -0 4.9 18.7 -0 134.9 78.7 -0 -0 -0 -0 -0 -0 5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t 0 0 0 0 0 0 0 0 5 WOOD PELLETS AND OTHER AGGLOMERATES 1000 t NT 0 NT 0
5.1 WOOD PELLETS Tons -0 4.9 18.7 -0 134.9 78.7 -0 -0 -0 -0 -0 -0 5.1 WOOD PELLETS 1000 t 5.1 WOOD PELLETS 1000 t NT 0 NT 0
5.2 OTHER AGGLOMERATES Tons -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 5.2 OTHER AGGLOMERATES 1000 t 5.2 OTHER AGGLOMERATES 1000 t NT 0 NT 0
6 SAWNWOOD (INCLUDING SLEEPERS) Tons -0 33,882.1 8,464.4 -0 20,755.0 5,565.7 -0 37,998.8 15,204.8 -0 26,763.3 10,037.3 6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 0 1109.21436975 0 339.425554226 0 27.74999647 0 66.40200092 6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3 NT 0 NT 0
6.C Coniferous Tons -0 20,328.0 4,905.1 -0 15,397.7 3,590.6 -0 293.9 67.7 -0 250.6 54.3 6.C Coniferous 1000 m3 6.C Coniferous 1000 m3 NT 0 NT 0
6.NC Non-Coniferous Tons -0 10,410.9 2,450.1 -0 4,319.0 1,635.6 -0 37,649.9 15,109.3 -0 25,742.9 9,916.6 6.NC Non-Coniferous 1000 m3 6.NC Non-Coniferous 1000 m3 NT 0 NT 0
6.NC.T of which: Tropical Tons -0 132.9 35.6 -0 24.7 11.5 -0 91.3 18.4 -0 -0 -0 6.NC.T of which: Tropical 1000 m3 6.NC.T of which: Tropical 1000 m3 NT 0 NT 0
7 VENEER SHEETS Tons -0 44.0 264.2 -0 71.7 398.1 -0 1,067.5 130.2 -0 2,546.2 484.0 7 VENEER SHEETS 1000 m3 0 0 0 0.000000033 0 0 0 0 7 VENEER SHEETS 1000 m3 NT 0 NT 0
7.C Coniferous Tons -0 1.4 0.9 -0 0.7 2.6 -0 -0 -0 -0 -0 -0 7.C Coniferous 1000 m3 7.C Coniferous 1000 m3 NT 0 NT 0
7.NC Non-Coniferous Tons -0 42.7 263.3 -0 71.0 395.5 -0 1,067.5 130.2 -0 2,546.2 484.0 7.NC Non-Coniferous 1000 m3 7.NC Non-Coniferous 1000 m3 NT 0 NT 0
7.NC.T of which: Tropical Tons -0 1.4 14.8 -0 0.2 2.9 -0 -0 -0 -0 -0 -0 7.NC.T of which: Tropical 1000 m3 7.NC.T of which: Tropical 1000 m3 NT 0 NT 0
8 WOOD-BASED PANELS Tons -0 182,629.0 81,651.2 -0 165,636.3 70,536.4 -0 17,661.0 7,530.8 -0 15,340.9 6,432.2 8 WOOD-BASED PANELS 1000 m3 -8,634 0 -8319.5682714788 0 -428282.1565 0 -324142.17583 0 8 WOOD-BASED PANELS 1000 m3 NT 0 NT 0
8.1 PLYWOOD 1000 m3 49.5 27,028.5 17,050.7 44.6 21,349.3 13,276.4 217.4 130.8 144.9 878.0 579.9 651.5 8.1 PLYWOOD 1000 m3 4 1324.965399 1.7423509488 565.9508123 0 0 53.58 18.6262 8.1 PLYWOOD 1000 m3 NT 167.92328076051 NT 833.4731377212
8.1.C Coniferous 1000 m3 26.7 15,324.7 9,511.5 28.9 13,232.6 8,274.0 159.1 87.3 66.7 447.6 250.2 150.4 8.1.C Coniferous 1000 m3 8.1.C Coniferous 1000 m3 NT 132.429326 NT 418.67365867
8.1.NC Non-Coniferous 1000 m3 19.0 9,945.2 6,214.3 13.9 7,426.0 4,436.5 58.3 43.5 78.2 376.9 305.9 482.5 8.1.NC Non-Coniferous 1000 m3 8.1.NC Non-Coniferous 1000 m3 NT 39.33835360891 NT 362.96183
8.1.NC.T of which: Tropical 1000 m3 0.0 22.6 42.1 -0 -0 -0 -0 -0 -0 -0 -0 -0 8.1.NC.T of which: Tropical 1000 m3 8.1.NC.T of which: Tropical 1000 m3 NT -0.03433137109 NT 0
8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3 169.5 101,295.9 33,219.0 164.8 92,039.8 28,186.0 23,535.4 14,795.5 5,778.8 32,749.8 12,343.6 4,383.3 8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3 8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) AND SIMILAR BOARD 1000 m3 NT 23365.8533421 NT 32585.0011108
8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 6.7 4,098.6 1,753.3 21.4 4,739.2 1,927.7 -0 -0 -0 13,570.5 28.4 18.6 8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 8.2.1 of which: ORIENTED STRAND BOARD (OSB) 1000 m3 NT -6.672169823 NT 13549.11308898
8.3 FIBREBOARD 1000 m² 8,415.3 54,304.6 31,381.5 8,110.2 52,247.1 29,074.1 404,529.4 2,734.6 1,607.0 290,514.4 2,417.5 1,397.4 8.3 FIBREBOARD 1000 m3 2,307 13,732 2,134 12,695 167,231 948 136,086 910 8.3 FIBREBOARD 1000 m3 NT 396114.063987 NT 282404.13331
8.3.1 HARDBOARD 1000 m² 2,005.2 11,454.7 7,311.4 1,789.2 10,665.3 6,671.1 87,506.1 607.9 414.3 51,022.2 436.7 301.2 8.3.1 HARDBOARD 1000 m3 8.3.1 HARDBOARD 1000 m3 NT 85500.820397 NT 49233.00221
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m² 3,924.1 17,566.2 9,479.7 3,762.9 16,278.1 8,098.1 149,792.6 481.2 244.8 101,565.7 310.7 156.2 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 1000 m3 NT 145868.523596 NT 97802.74249
8.3.3 OTHER FIBREBOARD 1000 m² 179.4 1,285.7 858.8 424.0 2,875.9 1,609.4 -0 -0 -0 1,840.3 26.3 30.4 8.3.3 OTHER FIBREBOARD 1000 m3 8.3.3 OTHER FIBREBOARD 1000 m3 NT -179.3663993 NT 1416.23686
9 WOOD PULP 1000 kg 90% m/n 41.6 59.8 72.4 43.4 46.2 63.9 -0 -0 -0 -0 -0 -0 9 WOOD PULP 1000 t 0 0 0 0 0 0 0 0 9 WOOD PULP 1000 t NT -41.60447 NT -43.40925
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 kg 90% m/n 9.6 10.7 14.6 0.1 1.9 3.1 -0 -0 -0 -0 -0 -0 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t 9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 1000 t NT -9.61027 NT -0.08
9.2 CHEMICAL WOOD PULP 1000 kg 90% m/n 30.1 47.1 49.5 41.0 41.8 50.7 -0 -0 -0 -0 -0 -0 9.2 CHEMICAL WOOD PULP 1000 t 0 0 0 0 0 0 0 0 9.2 CHEMICAL WOOD PULP 1000 t NT -30.1382 NT -41.03425
9.2.1 SULPHATE PULP 1000 kg 90% m/n 26.6 42.2 38.9 32.6 32.1 30.4 -0 -0 -0 -0 -0 -0 9.2.1 SULPHATE PULP 1000 t 9.2.1 SULPHATE PULP 1000 t NT -26.58628 NT -32.603
9.2.1.1 of which: BLEACHED 1000 kg 90% m/n 26.6 42.2 38.9 32.6 32.1 30.4 -0 -0 -0 -0 -0 -0 9.2.1.1 of which: BLEACHED 1000 t 9.2.1.1 of which: BLEACHED 1000 t NT -26.58628 NT -32.603
9.2.2 SULPHITE PULP 1000 kg 90% m/n 3.6 4.9 10.6 8.4 9.7 20.3 -0 -0 -0 -0 -0 -0 9.2.2 SULPHITE PULP 1000 t 9.2.2 SULPHITE PULP 1000 t NT -3.55192 NT -8.43125
9.3 DISSOLVING GRADES 1000 kg 90% m/n 1.9 2.1 8.2 2.3 2.6 10.1 -0 -0 -0 -0 -0 -0 9.3 DISSOLVING GRADES 1000 t 9.3 DISSOLVING GRADES 1000 t NT -1.856 NT -2.295
10 OTHER PULP Tons -0 37.0 50.9 -0 63.1 47.9 -0 7.5 9.2 -0 -0 -0 10 OTHER PULP 1000 t 0 0 -52.884 -0.000000002 0 0 0 0 10 OTHER PULP 1000 t NT 0 NT 0
10.1 PULP FROM FIBRES OTHER THAN WOOD Tons -0 37.0 50.9 -0 7.1 14.6 -0 7.5 9.2 -0 -0 -0 10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t 10.1 PULP FROM FIBRES OTHER THAN WOOD 1000 t NT 0 NT 0
10.2 RECOVERED FIBRE PULP 1000 kg 90% m/n -0 -0 -0 52.9 56.0 33.3 -0 -0 -0 -0 -0 -0 10.2 RECOVERED FIBRE PULP 1000 t 10.2 RECOVERED FIBRE PULP 1000 t NT 0 NT -52.884
11 RECOVERED PAPER Tons -0 55.0 7.4 -0 32.4 7.3 -0 10,532.3 1,360.8 -0 8,951.5 803.7 11 RECOVERED PAPER 1000 t 11 RECOVERED PAPER 1000 t NT 0 NT 0
12 PAPER AND PAPERBOARD Tons -0 50,277.0 51,982.0 -0 47,964.3 42,942.3 -0 3,544.8 4,465.7 -0 1,469.3 3,964.0 12 PAPER AND PAPERBOARD 1000 t 0 0.000001082 0 -0.000002501 0 0.000000076 0 0.000000302 12 PAPER AND PAPERBOARD 1000 t NT 0 NT 0
12.1 GRAPHIC PAPERS Tons -0 16,342.3 14,945.1 -0 15,598.7 12,633.2 -0 490.9 514.1 -0 541.9 513.1 12.1 GRAPHIC PAPERS 1000 t 0 0 0 0 0 0 0 0 12.1 GRAPHIC PAPERS 1000 t NT 0 NT 0
12.1.1 NEWSPRINT Tons -0 1,232.4 709.3 -0 1,117.3 524.8 -0 -0 -0 -0 -0 -0 12.1.1 NEWSPRINT 1000 t 12.1.1 NEWSPRINT 1000 t NT 0 NT 0
12.1.2 UNCOATED MECHANICAL Tons -0 868.7 777.8 -0 734.0 594.2 -0 29.8 51.8 -0 17.2 18.6 12.1.2 UNCOATED MECHANICAL 1000 t 12.1.2 UNCOATED MECHANICAL 1000 t NT 0 NT 0
12.1.3 UNCOATED WOODFREE Tons -0 10,974.9 10,534.5 -0 11,207.0 9,300.9 -0 351.9 357.1 -0 494.0 446.7 12.1.3 UNCOATED WOODFREE 1000 t 12.1.3 UNCOATED WOODFREE 1000 t NT 0 NT 0
12.1.4 COATED PAPERS Tons -0 3,266.3 2,923.4 -0 2,540.4 2,213.3 -0 109.2 105.2 -0 30.7 47.9 12.1.4 COATED PAPERS 1000 t 12.1.4 COATED PAPERS 1000 t NT 0 NT 0
12.2 HOUSEHOLD AND SANITARY PAPERS Tons -0 5,978.7 7,234.6 -0 5,698.7 6,158.4 -0 0.7 0.6 -0 0.9 2.5 12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t 12.2 HOUSEHOLD AND SANITARY PAPERS 1000 t NT 0 NT 0
12.3 PACKAGING MATERIALS Tons -0 26,669.6 21,593.1 -0 25,682.8 18,372.5 -0 2,917.6 2,229.7 -0 778.5 1,469.6 12.3 PACKAGING MATERIALS 1000 t 0 0 0 0 0 0 0 0 12.3 PACKAGING MATERIALS 1000 t NT 0 NT 0
12.3.1 CASE MATERIALS Tons -0 11,758.8 5,698.2 -0 12,881.5 5,360.4 -0 2,692.0 1,278.5 -0 329.9 172.9 12.3.1 CASE MATERIALS 1000 t 12.3.1 CASE MATERIALS 1000 t NT 0 NT 0
12.3.2 CARTONBOARD Tons -0 10,892.2 12,310.7 -0 9,380.4 10,300.0 -0 91.0 852.6 -0 116.6 1,043.7 12.3.2 CARTONBOARD 1000 t 12.3.2 CARTONBOARD 1000 t NT 0 NT 0
12.3.3 WRAPPING PAPERS Tons -0 3,023.3 3,017.4 -0 2,471.1 2,273.8 -0 54.0 57.7 -0 329.6 251.3 12.3.3 WRAPPING PAPERS 1000 t 12.3.3 WRAPPING PAPERS 1000 t NT 0 NT 0
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING Tons -0 995.3 566.9 -0 949.8 438.4 -0 80.5 40.9 -0 2.4 1.7 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t 12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 1000 t NT 0 NT 0
12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) Tons -0 1,286.5 8,209.3 -0 984.0 5,778.2 -0 135.7 1,721.2 -0 148.1 1,978.8 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t 12.4 OTHER PAPER AND PAPERBOARD N.E.S. (NOT ELSEWHERE SPECIFIED) 1000 t NT 0 NT 0
* excludes HS Codes - "Only some part of it"
Unit of quantity I M P O R T E X P O R T
HS Codes - "Only some part of it" 2019 2020 2019 2020
Quantity Tons Value Quantity Tons Value Quantity Tons Value Quantity Tons Value
440110 Tons -0 41.7 9.6 -0 -0 -0 -0 25.3 0.3 -0 64.7 4.8
440310 1000 m³ 14.6 9,543.9 2,059.8 16.1 8,572.7 1,839.4 -0 -0 -0 -0 -0 -0
440399 1000 m³ -0 -0 -0 1.7 788.2 191.4 -0 -0 -0 -0 -0 -0
440139 Tons -0 1,701.2 84.6 -0 809.0 60.9 -0 21.5 0.3 -0 -0 -0
440610 1000 m³ -0 -0 -0 0.9 582.9 148.2 -0 -0 -0 -0 -0 -0
440690 1000 m³ 4.6 3,143.1 1,109.2 0.6 455.5 191.2 0.1 55.0 27.8 1.5 769.7 66.4
440799 Tons -0 1,883.2 837.7 -0 1,305.4 437.9 -0 2,380.9 3,663.3 -0 1,466.8 2,999.7
440890 Tons -0 41.2 248.4 -0 70.8 392.6 -0 1,067.5 130.2 -0 2,546.2 484.0
441294 1000 m³ 0.4 245.5 269.5 0.3 213.5 213.5 -0 -0 -0 -0 -0 -0
441299 1000 m³ 3.4 1,513.1 1,055.5 1.4 477.2 352.5 -0 -0 -0 0.1 23.7 18.6
441232 1000 m³ 19.0 9,922.6 6,172.1 13.9 7,426.0 4,436.5 0.1 43.5 78.2 0.4 305.9 482.5
441114 1000 m² 2,306.6 23,998.0 13,731.6 2,134.1 22,427.7 12,695.4 167.2 1,645.5 947.9 136.1 1,643.7 909.7

JQ3 | Secondary Products| Trade

62 91 91
Country: Georgia Date: 21.05.2021 Country: Georgia
Name of Official responsible for reply: National Statistics Office of Georgia
Official Address (in full): 30, Tsotne Dadiani Street 0180 Tbilisi, Georgia
FOREST SECTOR QUESTIONNAIRE JQ3
SECONDARY PROCESSED PRODUCTS Telephone: 2 36 72 10 (315) Fax:
Trade E-mail:
This table highlights discrepancies between items and sub-items. Please verify your data for any non-zero figure!
Specify Currency and Unit of Value (e.g.:1000 US $): 1000 USD Discrepancies
Product Product* I M P O R T V A L U E E X P O R T V A L U E Product Product* I M P O R T V A L U E E X P O R T V A L U E
code 2019 2020 2019 2020 Code 2019 2020 2019 2020
13 SECONDARY WOOD PRODUCTS 13 SECONDARY WOOD PRODUCTS
13.1 FURTHER PROCESSED SAWNWOOD 5,204.3 4,406.1 -0 8.8 13.1 FURTHER PROCESSED SAWNWOOD 0 0 0 0
13.1.C Coniferous 4,286.3 3,677.2 -0 0.0 13.1.C Coniferous
13.1.NC Non-coniferous 918.0 728.9 -0 8.8 13.1.NC Non-coniferous
13.1.NC.T of which: Tropical -0 -0 -0 -0 13.1.NC.T of which: Tropical
13.2 WOODEN WRAPPING AND PACKAGING MATERIAL 2,823.1 3,218.1 173.5 171.5 13.2 WOODEN WRAPPING AND PACKAGING MATERIAL
13.3 WOOD PRODUCTS FOR DOMESTIC/DECORATIVE USE 3,258.3 1,805.8 11.9 10.5 13.3 WOOD PRODUCTS FOR DOMESTIC/DECORATIVE USE
13.4 BUILDER’S JOINERY AND CARPENTRY OF WOOD 17,359.8 12,129.2 399.6 143.2 13.4 BUILDER’S JOINERY AND CARPENTRY OF WOOD
13.5 WOODEN FURNITURE 59,248.7 39,852.7 773.4 1,070.5 13.5 WOODEN FURNITURE
13.6 PREFABRICATED BUILDINGS OF WOOD -0 -0 -0 -0 13.6 PREFABRICATED BUILDINGS OF WOOD
13.7 OTHER MANUFACTURED WOOD PRODUCTS 811.1 786.0 53.4 30.9 13.7 OTHER MANUFACTURED WOOD PRODUCTS
14 SECONDARY PAPER PRODUCTS 14 SECONDARY PAPER PRODUCTS
14.1 COMPOSITE PAPER AND PAPERBOARD 65.5 115.1 -0 1.4 14.1 COMPOSITE PAPER AND PAPERBOARD
14.2 SPECIAL COATED PAPER AND PULP PRODUCTS 7,247.8 5,552.1 60.8 43.3 14.2 SPECIAL COATED PAPER AND PULP PRODUCTS
14.3 HOUSEHOLD AND SANITARY PAPER, READY FOR USE 19,605.2 17,370.9 2,154.3 1,452.9 14.3 HOUSEHOLD AND SANITARY PAPER, READY FOR USE
14.4 PACKAGING CARTONS, BOXES ETC. 19,813.4 16,059.3 7,735.2 7,821.5 14.4 PACKAGING CARTONS, BOXES ETC.
14.5 OTHER ARTICLES OF PAPER AND PAPERBOARD, READY FOR USE 28,327.4 24,432.4 612.5 265.5 14.5 OTHER ARTICLES OF PAPER AND PAPERBOARD, READY FOR USE OK OK OK OK
14.5.1 of which: PRINTING AND WRITING PAPER, READY FOR USE -0 -0 -0 -0 14.5.1 of which: PRINTING AND WRITING PAPER, READY FOR USE
14.5.2 of which: ARTICLES, MOULDED OR PRESSED FROM PULP 388.1 456.2 2.9 0.2 14.5.2 of which: ARTICLES, MOULDED OR PRESSED FROM PULP
14.5.3 of which: FILTER PAPER AND PAPERBOARD, READY FOR USE 113.0 77.9 2.6 0.8 14.5.3 of which: FILTER PAPER AND PAPERBOARD, READY FOR USE
* excludes HS Codes - "Only some part of it"
HS Codes - "Only some part of it" I M P O R T V A L U E E X P O R T V A L U E
2019 2020 2019 2020
4419 919.6 655.3 6.3 7.6
9406 12,953.2 4,136.9 12,039.4 55.6
440929 918.0 728.9 -0 8.8
441871 0.0 38.6 0.0 -0
441872 1,094.0 449.3 91.9 -0
441879 2,862.4 2,078.6 155.9 85.7
441890 3,332.3 1,820.1 684.1 285.6
442190 1,989.2 1,814.3 10,871.6 15,177.8
482390 1,314.4 1,022.4 341.4 60.3
940190 672.5 403.4 40.1 23.9
940390 8,581.1 6,559.9 377.1 110.4

ITTO1 | Estimates

Country: Date:
Name of Official responsible for reply:
Official Address (in full):
FOREST SECTOR QUESTIONNAIRE ITTO1
Telephone: Fax:
Production and Trade Estimates for 2021 E-mail:
Specify Currency and Unit of Value (e.g.:1000 US $): _____________________
Product Unit of Production I M P O R T E X P O R T
Code Product quantity Quantity Quantity Value Quantity Value
1.2 INDUSTRIAL ROUNDWOOD 1000 m3ub
1.2.C Coniferous 1000 m3ub
1.2.NC Non-Coniferous 1000 m3ub
1.2.NC.T of which: Tropical 1000 m3ub
6 SAWNWOOD (INCLUDING SLEEPERS) 1000 m3
6.C Coniferous 1000 m3
6.NC Non-Coniferous 1000 m3
6.NC.T of which: Tropical 1000 m3
7 VENEER SHEETS 1000 m3
7.C Coniferous 1000 m3
7.NC Non-Coniferous 1000 m3
7.NC.T of which: Tropical 1000 m3
8.1 PLYWOOD 1000 m3
8.1.C Coniferous 1000 m3
8.1.NC Non-Coniferous 1000 m3
8.1.NC.T of which: Tropical 1000 m3
m3 = cubic metres solid volume
m3ub = cubic metres solid volume underbark (i.e. excluding bark)

ITTO2 | Species | Trade

Country: Date:
Name of Official responsible for reply:
Official Address (in full):
FOREST SECTOR QUESTIONNAIRE ITTO2
Trade in Tropical Species Telephone: Fax:
E-mail:
Specify Currency and Unit of Value (e.g.:1000 US $): ___________________________
I M P O R T E X P O R T
Product Classifications 2019 2020 2019 2020
HS2017/HS2012/HS2007 Scientific Name Local/Trade Name Quantity Value Quantity Value Quantity Value Quantity Value
1000 m3ub / 1000 m3 1000 m3ub / 1000 m3 1000 m3ub / 1000 m3 1000 m3ub / 1000 m3
1.2.NC.T HS2017:
Industrial Roundwood, Tropical ex4403.12 4403.41/49
HS2012/2007:
ex4403.10 4403.41/49 ex4403.99
6.NC.T HS2017:
Sawnwood (including sleepers), Tropical ex4406.12/92 4407.21/22/25/26/27/28/29
HS2012/2007:
ex4406.10/90 4407.21/22/25/26/27/28/30
7.NC.T HS2017:
Veneer Sheets, Tropical 4408.31/39
HS2012/2007:
4408.31/39 ex4408.90
8.1.NC.T HS2017:
Plywood, Tropical 4412.31 ex4412.94/99
HS2012/2007:
4412.31 ex4412.32/94/99
m3 = cubic metres solid volume
m3ub = cubic metres solid volume underbark (i.e. excluding bark)
Note: List the major species traded in each category. Use additional sheet if more species to be explicitly reported. For tropical plywood, identify by face veneer if composed of more than one species.

ECE-EU | Species | Trade

Country: Georgia Date: 21.05.2021
Name of Official responsible for reply: National Statistics Office of Georgia
FOREST SECTOR QUESTIONNAIRE ECE/EU Species Trade Official Address (in full): 30, Tsotne Dadiani Street 0180 Tbilisi, Georgia DISCREPANCIES - please note cells with notes and review data Checks
- looks to see if JQ2 and this sheet the same
Trade in Roundwood and Sawnwood by species Telephone: 2 36 72 10 (315) Fax: - checks the sum when they should be equal
E-mail:
Specify Currency and Unit of Value (e.g.:1000 national currency): 1000 USD
I M P O R T E X P O R T I M P O R T E X P O R T
Product Classification Classification Product Classification Unit of 2019 2020 2019 2020 Product Classification Classification Unit of 2019 2020 2019 2020
Code HS2017 CN2017 HS2012 Quantity Quantity Tons Value Quantity Tons Value Quantity Tons Value Quantity Tons Value Code HS2017 CN2017 Product Quantity Quantity Value Quantity Value Quantity Value Quantity Value
1.2.C 4403.11/21/22/23/24/25/26 Industrial Roundwood, Coniferous 440320 1000 m3 22.9 14,594.9 2,956.1 9.0 5,704.4 1,060.9 -0 -0 -0 0.1 73.3 22.2 1.2.C 4403.11/21/22/23/24/25/26 Industrial Roundwood, Coniferous 1000 m3ub does not match JQ2
4403.23/24 Fir/Spruce (Abies spp., Picea spp.) 4403.23/24 Fir/Spruce (Abies spp., Picea spp.) 1000 m3ub incomplete data incomplete data incomplete data incomplete data incomplete data incomplete data incomplete data incomplete data
4403 23 10 sawlogs and veneer logs 440320110 1000 m3 1.8 1,125.8 231.4 4.9 3,167.1 563.6 -0 -0 -0 -0 -0 -0 4403 23 10 sawlogs and veneer logs 1000 m3ub
4403 23 90 4403 24 00 pulpwood and other industrial roundwood 440320190 1000 m3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4403 23 90 4403 24 00 pulpwood and other industrial roundwood 1000 m3ub
4403.21/22 Pine (Pinus spp.) 4403.21/22 Pine (Pinus spp.) 1000 m3ub incomplete data incomplete data incomplete data incomplete data incomplete data incomplete data incomplete data incomplete data
4403 21 10 sawlogs and veneer logs 440320310 1000 m3 19.9 12,672.8 2,575.2 3.7 2,338.0 456.0 -0 -0 -0 0.1 73.3 22.2 4403 21 10 sawlogs and veneer logs 1000 m3ub
4403 21 90 4403 22 00 pulpwood and other industrial roundwood 440320390 1000 m3 0.2 122.7 20.3 -0 -0 -0 -0 -0 -0 -0 -0 -0 4403 21 90 4403 22 00 pulpwood and other industrial roundwood 1000 m3ub
1.2.NC 4403.12/41/49/91/93/94 4403.95/96/97/98/99 Industrial Roundwood, Non-Coniferous 440341, 440349, 440391, 440392, 440399 1000 m3 -0 -0 -0 1.7 788.2 191.4 -0 -0 -0 -0 -0 -0 1.2.NC 4403.12/41/49/91/93/94 4403.95/96/97/98/99 Industrial Roundwood, Non-Coniferous 1000 m3ub
4403.91 of which: Oak (Quercus spp.) 440391 1000 m3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4403.91 of which: Oak (Quercus spp.) 1000 m3ub
4403.93/94 of which: Beech (Fagus spp.) 440392 1000 m3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4403.93/94 of which: Beech (Fagus spp.) 1000 m3ub
4403.95/96 of which: Birch (Betula spp.) 440399510, 440399590, 440399950 1000 m3 -0 -0 -0 1.7 788.2 191.4 -0 -0 -0 -0 -0 -0 4403.95/96 of which: Birch (Betula spp.) 1000 m3ub subitems as large as total subitems as large as total subitems as large as total subitems as large as total subitems as large as total subitems as large as total
4403 95 10 sawlogs and veneer logs 440391100, 440392100, 440399510 1000 m3 -0 -0 -0 0.1 59.3 15.7 -0 -0 -0 -0 -0 -0 4403 95 10 sawlogs and veneer logs 1000 m3ub
4403 95 90 4403 96 00 pulpwood and other industrial roundwood 440399590, 440391900, 440392900 1000 m3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4403 95 90 4403 96 00 pulpwood and other industrial roundwood 1000 m3ub
4403.97 of which: Poplar/Aspen (Populus spp.) 440399100 1000 m3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4403.97 of which: Poplar/Aspen (Populus spp.) 1000 m3ub
4403.98 of which: Eucalyptus (Eucalyptus spp.) 440399300 1000 m3 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4403.98 of which: Eucalyptus (Eucalyptus spp.) 1000 m3ub
6.C 4406.11/91 4407.11/12/19 Sawnwood, Coniferous 440710 1000 m3 33.3 20,328.0 4,905.1 26.3 15,397.7 3,590.6 0.4 293.9 67.7 0.3 250.6 54.3 6.C 4406.11/91 4407.11/12/19 Sawnwood, Coniferous 1000 m3 does not match JQ2 does not match JQ2 does not match JQ2 does not match JQ2
4407.12 of which: Fir/Spruce (Abies spp., Picea spp.) 440710310 1000 m3 0.1 73.4 35.6 0.8 457.2 114.7 0.1 31.5 8.7 0.0 7.0 1.9 4407.12 of which: Fir/Spruce (Abies spp., Picea spp.) 1000 m3
4407.11 of which: Pine (Pinus spp.) 440710330 1000 m3 0.4 214.3 41.6 0.5 297.2 72.5 0.1 0.1 0.1 0.1 0.1 0.1 4407.11 of which: Pine (Pinus spp.) 1000 m3
6.NC 4406.12/92 4407.21/22/25/26/27/28/29/91/92/93/94/95/96/97/99 Sawnwood, Non-coniferous 440721 , 440722, 440725, 440726, 440727, 440728, 440729, 440791, 440792, 440793, 440794, 440795, 440799 Tons -0 10,410.9 2,450.1 -0 4,319.0 1,635.6 -0 37,649.9 15,109.3 -0 25,742.9 9,916.6 6.NC 4406.12/92 4407.21/22/25/26/27/28/29/91/92/93/94/95/96/97/99 Sawnwood, Non-coniferous 1000 m3
4407.91 of which: Oak (Quercus spp.) 440791 Tons -0 380.4 499.9 -0 637.1 692.2 0.4 270.7 355.9 0.3 220.0 309.8 4407.91 of which: Oak (Quercus spp.) 1000 m3
4407.92 of which: Beech (Fagus spp.) 440792 1000 m3 8.9 8,014.5 1,076.9 2.7 2,203.1 318.7 55.3 34,907.0 11,071.8 33.0 23,954.6 6,461.6 4407.92 of which: Beech (Fagus spp.) 1000 m3
4407.93 of which: Maple (Acer spp.) 440793 Tons -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4407.93 of which: Maple (Acer spp.) 1000 m3
4407.94 of which: Cherry (Prunus spp.) 440794 Tons -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 4407.94 of which: Cherry (Prunus spp.) 1000 m3
4407.95 of which: Ash (Fraxinus spp.) 440795 Tons -0 -0 -0 0.2 148.7 175.4 -0 -0 -0 0.1 101.5 145.5 4407.95 of which: Ash (Fraxinus spp.) 1000 m3
4407.97 of which: Poplar/Aspen (Populus spp.) 440799910 1000 m3 0.1 73.0 14.1 0.2 170.3 32.2 -0 -0 -0 -0 -0 -0 4407.97 of which: Poplar/Aspen (Populus spp.) 1000 m3
4407.96 of which: Birch (Betula spp.) 440799 Tons -0 1,883.2 837.7 -0 1,305.4 437.9 8.7 2,380.9 3,663.3 2.0 1,466.8 2,999.7 4407.96 of which: Birch (Betula spp.) 1000 m3
Light blue cells are requested only for EU members using the Combined Nomenclature to fill in - other countries are welcome to do so if their trade classification nomenclature permits
Please note that information on tropical species trade is requested in questionnaire ITTO2 for ITTO member countries
m3 = cubic metres solid volume
m3ub = cubic metres solid volume underbark (i.e. excluding bark)

conversion factors

JFSQ
FOREST SECTOR QUESTIONNAIRE
Conversion Factors
NOTE THESE ARE ONLY GENERAL NUMBERS. IT WOULD BE PREFERABLE TO USE SPECIES- OR COUNTRY-SPECIFIC FACTORS
Multiply the quantity expressed in units on the right side of "per" with the factor to get the value expressed in units on left side of "per".
FAO and UNECE Statistical Publications Results from UNECE/FAO 2009 Conversion Factors Questionnaire (median)
Product JFSQ Product volume to weight volume to area volume/weight of finished product to volume of roundwood volume to weight volume/weight of finished product to volume of roundwood
Code Quantity m3 per MT m3 per m2 Roundwood m3 per MT Roundwood
Unit equivalent equivalent Notes to results of UNECE/FAO Conversion Factor Questionnaire
1 1000 m3 ub ROUNDWOOD (WOOD IN THE ROUGH)
1.1 1000 m3 ub WOOD FUEL, INCLUDING WOOD FOR CHARCOAL 1.38
1.1.C 1000 m3 ub Coniferous 1.60 Green = 1.12 Based on 891 kg/m3 green, basic density of .41, and 20% moisture seasoned
Seasoned = 1.82 Based on 407 kg/m3 dry, assuming 20% moisture
1.1.NC 1000 m3 ub Non-Coniferous 1.33 Green=1.05 Based on 1137 kg/m3 green, specific gravity of .55, and 20% moisture seasoned
Seasoned=1.43
1.2 1000 m3 ub INDUSTRIAL ROUNDWOOD
1.2.C 1000 m3 ub Coniferous 1.10 Based on 50/50 ratio of share of logs/pulpwood in industrial roundwood
1.2.C.Fir Fir (and Spruce) 1.21 Austrian Energy Agency, 2009. weighted by share of standing inventory of European speices (57% spruce, 10% silver fir and remaining species)
1.2.C.Pine Pine 1.08 Austrian Energy Agency, 2009, weighted 25% Scots Pine, 2% maritime pine, 2% black pine and remaining species
1.2.NC 1000 m3 ub Non-Coniferous 0.91 Based on 50/50 ratio of share of logs/pulpwood in industrial roundwood
1.2.NC.T 1000 m3 ub of which:Tropical 1.37 AFRICA=1.31, ASIA=0.956, LA. AM= 0.847, World=1.12 Source: Fonseca "Measurement of Roundwood" 2005, ITTO Annual Review 2007, table 3-2-a Species weight averaged using m3/tonne from Fonseca 2005 and volume exported by species from each region as shown in ITTO 2007 (assumes that bark is removed)
1.2.1 1000 m3 ub SAWLOGS AND VENEER LOGS 1.05 Based on 950 kg/m3 green. Bark is included in weight but not in volume.
1.2.1.C 1000 m3 ub Coniferous 1.43 1.07 Based on 935 kg/m3 green. Bark is included in weight but not in volume.
1.2.1.NC 1000 m3 ub Non-Coniferous 1.25 0.91 Based on 1093 kg/m3 green. Bark is included in weight but not in volume.
1.2.NC.Beech Beech 0.92 Austrian Energy Agency, 2009
1.2.NC.Birch Birch 0.88 Austrian Energy Agency, 2009
1.2.NC.Eucalyptus Eucalyptus 0.77 ATIBT, 1982
1.2.NC.Oak Oak 0.88 Austrian Energy Agency, 2009
1.2.NC.Poplar Poplar 1.06 Austrian Energy Agency, 2009
1.2.2 1000 m3 ub PULPWOOD (ROUND & SPLIT) 1.48 1.08 Based on 930 kg/m3 green. Bark is included in weight but not in volume.
1.2.2.C 1000 m3 ub Coniferous 1.54 1.12 Based on 891 kg/m3 green. Bark is included in weight but not in volume.
1.2.2.NC 1000 m3 ub Non-Coniferous 1.33 0.91 Based on 1095 kg/m3 green. Bark is included in weight but not in volume.
1.2.3 1000 m3 ub OTHER INDUSTRIAL ROUNDWOOD 1.33 1.07
1.2.3.C 1000 m3 ub Coniferous 1.43 1.12 same as 1.2.2.C
1.2.3.NC 1000 m3 ub Non-Coniferous 1.25 0.91 same as 1.2.2.NC
2 1000 MT WOOD CHARCOAL 6.00 5.35 Does not include the use of any of the wood fiber to generate the heat to make (add about 30% if inputted wood fiber used to provide heat)
3 1000 m3 WOOD CHIPS, PARTICLES AND RESIDUES
3.1 1000 m3 WOOD CHIPS AND PARTICLES 1.60 softwood=1.19 1.205 Based on swe/odmt of 2.41 and avg delivered mt / odmt of 2.0 in solid m3
hardwood = 1.05 1.123 Based on swe/odmt of 2.01 and avg delivered mt / odmt of 1.79 in solid m3
mix = 1.15
3.2 1000 m3 WOOD RESIDUES 1.50 Green=1.15 Based on wood chips
Seasoned = 2.12 2.07 Assumption for seasoned is based on average basic density of .42 from questionnaire and assumes 15% moisture content
4 1000 mt RECOVERED POST-CONSUMER WOOD Delivered MT (12-20% atmospheric moisture). Convert to dry weight for energy purposes (multiply by 0.88 - 0.80)
5 1000 MT WOOD PELLETS AND OTHER AGGLOMERATES
5.1 1000 MT WOOD PELLETS 1.51 1.44 Bulk (loose) volume, 5-10% moisture
5.2 1000 MT OTHER AGGLOMERATES 1.31 2.29 roundwood equivalent is m3rw/odmt, volume to weight is bulk (loose volume)
6 1000 m3 SAWNWOOD 1.6 / 1.82*
6.C 1000 m3 Coniferous 1.82 Green=1.202 RoughGreen=1.67 Green sawnwood based on basic density of .94, less bark (11%)
Dry = 1.99 RoughDry=1.99 Dry sawnwood weight based on basic density of .42, 4% shrinkage and 15% moisture content
PlanedDry=2.13
6.C.Fir Fir and Spruce 2.16 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight). Weighted ratio of standing inventory.
6.C.Pine Pine 1.72 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight). Weighted ratio of standing inventory.
6.NC 1000 m3 Non-Coniferous 1.43 Green=1.04 RoughGreen=1.86 Green sawnwood based on basic density of 1.09, less bark (12%)
Seasoned=1.50 RoughDry=2.01 Dry sawnwood weight based on basic density of .55, 5% shrinkage and 15% moisture content
PlanedDry=2.81
6.NC.Ash Ash 1.47 Wood Database (wood-database.com). Air-dry.
6.NC.Beech Beech 1.42 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight).
6.NC.Birch Birch 1.47 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight).
6.NC.Cherry Cherry 1.62 Giordano, 1976, Tecnologia del legno. Air-dry. Prunus avium.
6.NC.Maple Maple 1.35 Giordano, 1976, Tecnologia del legno. Air-dry
6.NC.Oak Oak 1.38 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight).
6.NC.Poplar Poplar 2.29 Austrian Energy Agency, 2009. Dried weight (15% moisture content dry weight).
6.NC.T 1000 m3 of which:Tropical 1.38 Based on FP Conversion Factors (2019), Asia (720 kg / m3)
7 1000 m3 VENEER SHEETS 1.33 0.0025 1.9*
7.C 1000 m3 Coniferous 0.003 Green=1.20 1.5*** Green veneer based on basic density of .94, less bark (11%)
Seasoned=2.06 1.6*** Dry veneer weight based on basic density of .42, 9% shrinkage and 5% moisture content
7.NC 1000 m3 Non-Coniferous 0.001 Green=1.04 1.5*** Green veneer based on basic density of 1.09, less bark (11%)
Seasoned=1.53 1.6*** Dry veneer weight based on basic density of .55, 11.5% shrinkage and 5% moisture content
7.NC.T 1000 m3 of which:Tropical
8 1000 m3 WOOD-BASED PANELS 1.6
8.1 1000 m3 PLYWOOD 1.54 0.105 2.3*
8,1.C 1000 m3 Coniferous 0.0165*** 1.69 2.12 dried, sanded, peeled
8.1.NC 1000 m3 Non-Coniferous 0.0215*** 1.54 1.92 dried, sanded, sliced
8.1.NC.T 1000 m3 of which:Tropical
8.2 1000 m3 PARTICLE BOARD (including OSB) 1.54
8.2x 1000 m3 PARTICLE BOARD (excluding OSB) 0.018*** 1.53 1.50
8.2.1 1000 m3 of which: OSB 0.018*** 1.67 1.63
8.3 1000 m3 FIBREBOARD
8.3.1 1000 m3 HARDBOARD 1.05 0.005
Alex McCusker: Alex McCusker: 0.003 per Conversion Factors Study
1.06 1.93 solid wood per m3 of product
8.3.2 1000 m3 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 2.00 0.016 1.37 1.70 solid wood per m3 of product
8.3.3 1000 m3 OTHER FIBREBOARD 4.00 0.025 3.44 0.71 solid wood per m3 of product, mostly insulating board
9 1000 MT WOOD PULP 3.37 3.86
9.1 1000 MT MECHANICAL AND SEMI-CHEMICAL 2.60 air-dried metric ton (mechanical 2.50, semi-chemical 2.70)
9..2 1000 MT CHEMICAL 4.90
9.2.1 1000 MT SULPHATE 4.57 air-dried metric ton (unbleached 4.63, bleached 4.50)
9.2.1.1 1000 MT of which: bleached 4.50 air-dried metric ton
9.2.2 1000 MT SULPHITE 4.83 air-dried metric ton (unbleached 4.64 and bleached 5.01)
9.3 1000 MT DISSOLVING GRADES 5.65 air-dried metric ton
10 1000 MT OTHER PULP
10.1 1000 MT PULP FROM FIBRES OTHER THAN WOOD
10.2 1000 MT RECOVERED FIBRE PULP
11 1000 MT RECOVERED PAPER 1.28 MT in per MT out
12 1000 MT PAPER AND PAPERBOARD 3.37 3.6
12.1 1000 MT GRAPHIC PAPERS
12.1.1 1000 MT NEWSPRINT 2.80 air-dried metric ton
12.1.2 1000 MT UNCOATED MECHANICAL 3.50 air-dried metric ton
12.1.3 1000 MT UNCOATED WOODFREE
12.1.4 1000 MT COATED PAPERS 3.95 air-dried metric ton
12.2 1000 MT SANITARY AND HOUSEHOLD PAPERS 4.90 air-dried metric ton
12.3 1000 MT PACKAGING MATERIALS 3.25 air-dried metric ton
12.3.1 1000 MT CASE MATERIALS 4.20 air-dried metric ton
12.3.2 1000 MT CARTONBOARD 4.00 air-dried metric ton
12.3.3 1000 MT WRAPPING PAPERS 4.10 air-dried metric ton
12.3.4 1000 MT OTHER PAPERS MAINLY FOR PACKAGING 4.00 air-dried metric ton
12.4 1000 MT OTHER PAPER AND PAPERBOARD N.E.S 3.48 air-dried metric ton
For inverse relationships divide 1 by the factor given, e.g. to convert m3 of wood charcoal to mt divide 1 by m3/mt factor of 6 = 0.167
Notes: Forest Measures
MT = metric tonnes (1000 kg) Unit m3/unit m3/unit
m3 = cubic meters (solid volume) 1000 board feet (sawlogs) 4.53**
m2 = square meters 1000 board feet (sawnwood - nominal) 2.36 1.69 nominal board feet to actual m3
(s) = solid volume 1000 square feet (1/8 inch thickness) 0.295
cord 3.625 2.43
Unit Conversion cord (pulpwood) 2.55 2.43
1 inch = 25.4 millimetres cord (wood fuel) 2.12 2.43
1 square foot = 0.0929 square metre cubic foot 0.02832
1 pound = 0.454 kilograms cubic foot (stacked) 0.01841
1 short ton (2000 pounds) = 0.9072 metric ton cunit 2.83
1 long ton (2240 pounds) = 1.016 metric ton fathom 6.1164
Bold = FAO published figure hoppus cubic foot 0.0222
hoppus super(ficial) foot 0.00185
* = ITTO hoppus ton (50 hoppus cubic feet) 1.11
** = obolete - more recent figures would be Petrograd Standard 4.672
for OR, WA, AK (west of Cascades), SE US (Doyle region): 6.3 stere 1 0.67
Inland west US, Great Lakes US, E. Can.: 5.7 stere (pulpwood) 0.72 0.67
NE US Int 1/4": 5 stere (wood fuel) 0.65 0.67
*** = Conversion Factor Study, US figures, rotary for conifer and sliced for non-conifer
Fonseca *Measurement of Roundwood" 2005. Estimated by Matt Fonseca based on regional knowledge of the scaling methods and timber types
prepared February 2004
updated 2007 with RWE factors
updated 2009 with provisional results of forest products conversion factors study
updated 2011 with results of forest products conversion factors study (DP49)

Annex1 | JQ1-Corres.

FOREST SECTOR QUESTIONNAIRE JQ1 (Supp. 1)
PRIMARY PRODUCTS
Removals and Production
CORRESPONDENCES to CPC Ver.2.1
Central Product Classification Version 2.1 (CPC Ver. 2.1)
Product Product
Code
REMOVALS OF ROUNDWOOD (WOOD IN THE ROUGH)
1 ROUNDWOOD (WOOD IN THE ROUGH) 031
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 0313
1.1.C Coniferous 03131
1.1.NC Non-Coniferous 03132
1.2 INDUSTRIAL ROUNDWOOD 0311 0312
1.2.C Coniferous 0311
1.2.NC Non-Coniferous 0312
1.2.NC.T of which: Tropical ex0312
1.2.1 SAWLOGS AND VENEER LOGS ex03110 ex03120
1.2.1.C Coniferous ex03110
1.2.1.NC Non-Coniferous ex03120
1.2.2 PULPWOOD, ROUND AND SPLIT (INCLUDING WOOD FOR PARTICLE BOARD, OSB AND FIBREBOARD) ex03110 ex03120
1.2.2.C Coniferous ex03110
1.2.2.NC Non-Coniferous ex03120
1.2.3 OTHER INDUSTRIAL ROUNDWOOD ex03110 ex03120
1.2.3.C Coniferous ex03110
1.2.3.NC Non-Coniferous ex03120
PRODUCTION
2 WOOD CHARCOAL ex34510
3 WOOD CHIPS, PARTICLES AND RESIDUES ex31230 ex39283
3.1 WOOD CHIPS AND PARTICLES ex31230
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) ex39283
4 RECOVERED POST-CONSUMER WOOD ex39283
5 WOOD PELLETS AND OTHER AGGLOMERATES 39281 39282
5.1 WOOD PELLETS 39281
5.2 OTHER AGGLOMERATES 39282
6 SAWNWOOD (INCLUDING SLEEPERS) 311 3132
6.C Coniferous 31101 ex31109 ex3132
6.NC Non-Coniferous 31102 ex31109 ex3132
6.NC.T of which: Tropical ex31102 ex31109 ex3132
7 VENEER SHEETS 3151
7.C Coniferous 31511
7.NC Non-Coniferous 31512
7.NC.T of which: Tropical ex31512
8 WOOD-BASED PANELS 3141 3142 3143 3144
8.1 PLYWOOD 3141 3142
8.1.C Coniferous 31411 31421
8.1.NC Non-Coniferous 31412 31422
8.1.NC.T of which: Tropical ex31412 ex31422
8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) and SIMILAR BOARD 3143
8.2.1 of which: ORIENTED STRAND BOARD (OSB) 31432
8.3 FIBREBOARD 3144
8.3.1 HARDBOARD 31442
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 31441
8.3.3 OTHER FIBREBOARD 31449
9 WOOD PULP 32111 32112 ex32113
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP ex32113
9.2 CHEMICAL WOOD PULP 32112
9.2.1 SULPHATE PULP ex32112
9.2.1.1 of which: BLEACHED ex32112
9.2.2 SULPHITE PULP ex32112
9.3 DISSOLVING GRADES 32111
10 OTHER PULP ex32113
10.1 PULP FROM FIBRES OTHER THAN WOOD ex32113
10.2 RECOVERED FIBRE PULP ex32113
11 RECOVERED PAPER 3924
12 PAPER AND PAPERBOARD 3212 3213 32142 32143 ex32149 32151 32198 ex32199
12.1 GRAPHIC PAPERS 3212 ex32143 ex32149
12.1.1 NEWSPRINT 32121
12.1.2 UNCOATED MECHANICAL ex32122 ex32129
12.1.3 UNCOATED WOODFREE 32122 ex32129
12.1.4 COATED PAPERS ex32143 ex32149
12.2 HOUSEHOLD AND SANITARY PAPERS 32131
12.3 PACKAGING MATERIALS 32132 ex32133 32134 32135 ex32136 ex32137 32142 32151 ex32143 ex32149
12.3.1 CASE MATERIALS 32132 32134 32135 ex32136
12.3.2 CARTONBOARD ex32133 ex32136 ex32143 ex32149
12.3.3 WRAPPING PAPERS ex32133 ex32136 ex32137 32142 32151
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING ex32136
12.4 OTHER PAPER AND PAPERBOARD N.E.S. ex32149 ex32133 ex32136 ex32137 32198 ex32199
Notes:
The term "ex" means that there is not a complete correlation between the two codes and that only a part of the CPC Ver.2.1 code is applicable.
For instance "ex31512" under product 7.NC.T means that only a part of CPC Ver.2.1 code 31512 refers to non-coniferous tropical veneer sheets.
In CPC, if only 3 or 4 digits are shown, then all sub-codes at lower degrees of aggregation are included (for example, 0313 includes 03131 and 03132).

Annex2 | JQ2-Corres.

FOREST SECTOR QUESTIONNAIRE JQ2 (Supp. 1)
PRIMARY PRODUCTS
Trade
CORRESPONDENCES to HS2017, HS2012 and SITC Rev.4
C l a s s i f i c a t i o n s
Product Product
Code HS2017 HS2012 SITC Rev.4
1 ROUNDWOOD (WOOD IN THE ROUGH) 4401.11/12 44.03 4401.10 44.03 245.01 247
1.1 WOOD FUEL (INCLUDING WOOD FOR CHARCOAL) 4401.11/12 4401.10 245.01
1.1.C Coniferous 4401.11 ex4401.10 ex245.01
1.1.NC Non-Coniferous 4401.12 ex4401.10 ex245.01
1.2 INDUSTRIAL ROUNDWOOD 44.03 44.03 247
1.2.C Coniferous 4403.11/21/22/23/24/25/26 ex4403.10 4403.20 ex247.3 247.4
1.2.NC Non-Coniferous 4403.12/41/49/91/93/94/95/96/97/98/99 ex4403.10 4403.41/49/91/92/99 ex247.3 247.5 247.9
1.2.NC.T of which: Tropical ex4403.12 4403.41/49 ex4403.10 4403.41/49 ex4403.99 ex247.3 247.5 ex247.9
2 WOOD CHARCOAL 4402.90 4402.90 ex245.02
3 WOOD CHIPS, PARTICLES AND RESIDUES 4401.21/22 ex4401.40 4401.21/22 ex4401.39 246.1 ex246.2
3.1 WOOD CHIPS AND PARTICLES 4401.21/22 4401.21/22 246.1
3.2 WOOD RESIDUES (INCLUDING WOOD FOR AGGLOMERATES) ex4401.40 ex4401.39 ex246.2
4 RECOVERED POST-CONSUMER WOOD ex4401.40 ex4401.39 ex246.2
5 WOOD PELLETS AND OTHER AGGLOMERATES 4401.31/39 4401.31 ex4401.39 ex246.2
5.1 WOOD PELLETS 4401.31 4401.31 ex246.2
5.2 OTHER AGGLOMERATES 4401.39 ex4401.39 ex246.2
6 SAWNWOOD (INCLUDING SLEEPERS) 44.06 44.07 44.06 44.07 248.1 248.2 248.4
6.C Coniferous 4406.11/91 4407.11/12/19 ex4406.10/90 4407.10 ex248.11 ex248.19 248.2
6.NC Non-Coniferous 4406.12/92 4407.21/22/25/26/27/28/29/91/92/93/94/95/96/97/99 ex4406.10/90 4407.21/22/25/26/27/28/29/91/92/93/94/95/99 ex248.11 ex248.19 248.4
6.NC.T of which: Tropical ex4406.12/92 4407.21/22/25/26/27/28/29 ex4406.10/90 4407.21/22/25/26/27/28/29 ex4407.99 ex248.11 ex248.19 ex248.4
7 VENEER SHEETS 44.08 44.08 634.1
7.C Coniferous 4408.10 4408.10 634.11
7.NC Non-Coniferous 4408.31/39/90 4408.31/39/90 634.12
7.NC.T of which: Tropical 4408.31/39 4408.31/39 ex4408.90 ex634.12
8 WOOD-BASED PANELS 44.10 44.11 4412.31/33/34/39/94/99 44.10 44.11 4412.31/32/39/94/99 634.22/23/31/33/39 634.5
8.1 PLYWOOD 4412.31/33/34/39/94/99 4412.31/32/39/94/99 634.31/33/39
8.1.C Coniferous 4412.39 ex4412.94 ex4412.99 4412.39 ex4412.94 ex.4412.99 ex634.31 ex634.33 ex634.39
8.1.NC Non-Coniferous 4412.31/33/34 ex4412.94 ex4412.99 4412.31/32 ex4412.94 ex4412.99 ex634.31 ex634.33 ex634.39
8.1.NC.T of which: Tropical 4412.31 ex4412.94 ex4412.99 4412.31 ex4412.32 ex4412.94 ex4412.99 ex634.31 ex634.33 ex634.39
8.2 PARTICLE BOARD, ORIENTED STRAND BOARD (OSB) and SIMILAR BOARD 44.10 44.10 634.22/23
8.2.1 of which: ORIENTED STRAND BOARD (OSB) 4410.12 4410.12 ex634.22
8.3 FIBREBOARD 44.11 44.11 634.5
8.3.1 HARDBOARD 4411.92 4411.92 ex634.54 ex634.55
8.3.2 MEDIUM/HIGH DENSITY FIBREBOARD (MDF/HDF) 4411.12/13 ex4411.14* 4411.12/13 ex4411.14* ex634.54 ex634.55
8.3.3 OTHER FIBREBOARD ex4411.14 4411.93/94 ex4411.14 4411.93/94 ex634.54 ex634.55
9 WOOD PULP 47.01/02/03/04/05 47.01/02/03/04/05 251.2 251.3 251.4 251.5 251.6 251.91
9.1 MECHANICAL AND SEMI-CHEMICAL WOOD PULP 47.01 47.05 47.01 47.05 251.2 251.91
9.2 CHEMICAL WOOD PULP 47.03 47.04 47.03 47.04 251.4 251.5 251.6
9.2.1 SULPHATE PULP 47.03 47.03 251.4 251.5
9.2.1.1 of which: BLEACHED 4703.21/29 4703.21/29 251.5
9.2.2 SULPHITE PULP 47.04 47.04 251.6
9.3 DISSOLVING GRADES 47.02 47.02 251.3
10 OTHER PULP 47.06 47.06 251.92
10.1 PULP FROM FIBRES OTHER THAN WOOD 4706.10/30/91/92/93 4706.10/30/91/92/93 ex251.92
10.2 RECOVERED FIBRE PULP 4706.20 4706.20 ex251.92
11 RECOVERED PAPER 47.07 47.07 251.1
12 PAPER AND PAPERBOARD 48.01 48.02 48.03 48.04 48.05 48.06 48.08 48.09 48.10 4811.51/59 48.12 48.13 48.01 48.02 48.03 48.04 48.05 48.06 48.08 48.09 48.10 4811.51/59 48.12 48.13 641.1 641.2 641.3 641.4 641.5 641.62/63/64/69/71/72/74/75/76/77/93 642.41
12.1 GRAPHIC PAPERS 48.01 4802.10/20/54/55/56/57/58/61/62/69 48.09 4810.13/14/19/22/29 48.01 4802.10/20/54/55/56/57/58/61/62/69 48.09 4810.13/14/19/22/29 641.1 641.21/22/26/29 641.3
12.1.1 NEWSPRINT 48.01 48.01 641.1
12.1.2 UNCOATED MECHANICAL 4802.61/62/69 4802.61/62/69 641.29
12.1.3 UNCOATED WOODFREE 4802.10/20/54/55/56/57/58 4802.10/20/54/55/56/57/58 641.21/22/26
12.1.4 COATED PAPERS 48.09 4810.13/14/19/22/29 48.09 4810.13/14/19/22/29 641.3
12.2 HOUSEHOLD AND SANITARY PAPERS 48.03 48.03 641.63
12.3 PACKAGING MATERIALS 4804.11/19/21/29/31/39/42/49/51/52/59 4805.11/12/19/24/25/30/91/92/93 4806.10/20/40 48.08 4810.31/32/39/92/99 4811.51/59 4804.11/19/21/29/31/39/42/49/51/52/59 4805.11/12/19/24/25/30/91/92/93 4806.10/20/40 48.08 4810.31/32/39/92/99 4811.51/59 641.41/42/46 ex641.47 641.48/51/52 ex641.53 641.54/59/62/64/69/71/72/74/75/76/77
12.3.1 CASE MATERIALS 4804.11/19 4805.11/12/19/24/25/91 4804.11/19 4805.11/12/19/24/25/91 641.41/51/54 ex641.59
12.3.2 CARTONBOARD 4804.42/49/51/52/59 4805.92 4810.32/39/92 4811.51/59 4804.42/49/51/52/59 4805.92 4810.32/39/92 4811.51/59 ex641.47 641.48 ex641.59 641.75/76 ex641.77 641.71/72
12.3.3 WRAPPING PAPERS 4804.21/29/31/39 4805.30 4806.10/20/40 48.08 4810.31/99 4804.21/29/31/39 4805.30 4806.10/20/40 48.08 4810.31/99 641.42/46/52 ex641.53 641.62/64/69/74 ex641.77
12.3.4 OTHER PAPERS MAINLY FOR PACKAGING 4805.93 4805.93 ex641.59
12.4 OTHER PAPER AND PAPERBOARD N.E.S. 4802.40 4804.41 4805.40/50 4806.30 48.12 48.13 4802.40 4804.41 4805.40/50 4806.30 48.12 48.13 641.24 ex641.47 641.56 ex641.53 641.55/93 642.41
Notes:
The term "ex" means that there is not a complete correlation between the two codes and that only a part of the HS2012/HS2017 or SITC Rev.4 code is applicable.
For instance "ex4401.40" under product 3.2 means that only a part of HS2017 code 4401.40 refers to wood residues coming from wood processing (the other part coded under 4401.40 is recovered post-consumer wood).
In SITC Rev.4, if only 4 digits are shown, then all sub-headings at lower degrees of aggregation are included (for example, 634.1 includes 634.11 and 634.12).
* - Please assign the trade data for HS code 4411.14 to product 8.3.2 (MDF/HDF) and 8.3.3 (other fibreboard) if it is possible to do this in national statistics. If not, please assign all the trade data to item 8.3.2 as in most cases MDF/HDF will represent the large majority of trade.

Annex3 | JQ3-Corres.

FOREST SECTOR QUESTIONNAIRE JQ3 (Supp. 1)
SECONDARY PROCESSED PRODUCTS
Trade
CORRESPONDENCES to HS2017, HS2012 and SITC Rev.4
C l a s s i f i c a t i o n s
Product Product
Code HS2017 HS2012 SITC Rev.4
13 SECONDARY WOOD PRODUCTS
13.1 FURTHER PROCESSED SAWNWOOD 4409.10/22/29 4409.10/29 248.3 248.5
13.1.C Coniferous 4409.10 4409.10 248.3
13.1.NC Non-coniferous 4409.22/29 4409.29 248.5
13.1.NC.T of which: Tropical 4409.22 ex4409.29 ex248.5
13.2 WOODEN WRAPPING AND PACKAGING MATERIAL 44.15/16 44.15/16 635.1 635.2
13.3 WOOD PRODUCTS FOR DOMESTIC/DECORATIVE USE 44.14 4419.90 44.20 44.14 ex4419.00 44.20 635.41 ex635.42 635.49
13.4 BUILDER’S JOINERY AND CARPENTRY OF WOOD 4418.10/20/40/50/60/74/75/79/99 4418.10/20/40/50/60 ex4418.71 ex4418.72 ex4418.79 ex4418.90 635.31/32/33 ex635.34 ex635.39
13.5 WOODEN FURNITURE 9401.61/69 ex9401.90 9403.30/40/50/60 ex9403.90 9401.61/69 ex9401.90 9403.30/40/50/60 ex9403.90 821.16 ex821.19 821.51/53/55/59 ex821.8
13.6 PREFABRICATED BUILDINGS OF WOOD 9406.10 ex94.06 ex811.0
13.7 OTHER MANUFACTURED WOOD PRODUCTS 44.04/05/13/17 4421.10/99 44.04/05/13/17 4421.10 ex4421.90 634.21/91/93 635.91 ex635.99
14 SECONDARY PAPER PRODUCTS
14.1 COMPOSITE PAPER AND PAPERBOARD 48.07 48.07 641.92
14.2 SPECIAL COATED PAPER AND PULP PRODUCTS 4811.10/41/49/60/90 4811.10/41/49/60/90 641.73/78/79
14.3 HOUSEHOLD AND SANITARY PAPER, READY FOR USE 48.18 48.18 642.43/94
14.4 PACKAGING CARTONS, BOXES ETC. 48.19 48.19 642.1
14.5 OTHER ARTICLES OF PAPER AND PAPERBOARD, READY FOR USE 48.14/16/17/20/21/22/23 48.14/16/17/20/21/22/23 641.94 642.2 642.3 642.42/45/91/93/99 892.81
14.5.1 of which: PRINTING AND WRITING PAPER, READY FOR USE ex4823.90 ex4823.90 ex642.99
14.5.2 of which: ARTICLES, MOULDED OR PRESSED FROM PULP 4823.70 4823.70 ex642.99
14.5.3 of which: FILTER PAPER AND PAPERBOARD, READY FOR USE 4823.20 4823.20 642.45
Notes:
The term "ex" means that there is not a complete correlation between the two codes and that only a part of the HS2012/HS2017 or SITC Rev.4 code is applicable.
For instance "ex811.00" under "Prefabricated buildings of wood" means that only a part of SITC code 811.00 refers to buildings prefabricated from wood, as that code does not distinguish between the materials buildings were prefabricated from.
In SITC Rev.4, if only 4 digits are shown, then all subheadings at lower degrees of aggregation are included (for example, 892.2 includes 892.21 and 892.29).

Annex4 |JQ2-JQ3-Corres.

JQ Product code Nomenclature HS Code Remarks on HS codes
1 HS2012 440110
1 HS2012 4403
1.1 HS2012 440110
1.1C HS2012 440110 Only some part of it
1.1NC HS2012 440110 Only some part of it
1.2 HS2012 4403
1.2.C HS2012 440310 Only some part of it
1.2.C HS2012 440320
1.2.NC HS2012 440310 Only some part of it
1.2.NC HS2012 440341
1.2.NC HS2012 440349
1.2.NC HS2012 440391
1.2.NC HS2012 440392
1.2.NC HS2012 440399
1.2.NC.T HS2012 440310 Only some part of it
1.2.NC.T HS2012 440341
1.2.NC.T HS2012 440349
1.2.NC.T HS2012 440399 Only some part of it
2 HS2012 440290
3 HS2012 440121
3 HS2012 440122
3 HS2012 440139 Only some part of it
3.1 HS2012 440121
3.1 HS2012 440122
3.2 HS2012 440130 Only some part of it
3.2 HS2012 440139 Only some part of it
4 HS2012 440139 Only some part of it
5 HS2012 440131
5 HS2012 440139 Only some part of it
5.1 HS2012 440131
5.2 HS2012 440139 Only some part of it
6 HS2012 4406
6 HS2012 4407
6.C HS2012 440610 Only some part of it
6.C HS2012 440690 Only some part of it
6.C HS2012 440710
6.NC HS2012 440610 Only some part of it
6.NC HS2012 440690 Only some part of it
6.NC HS2012 440721
6.NC HS2012 440722
6.NC HS2012 440725
6.NC HS2012 440726
6.NC HS2012 440727
6.NC HS2012 440728
6.NC HS2012 440729
6.NC HS2012 440791
6.NC HS2012 440792
6.NC HS2012 440793
6.NC HS2012 440794
6.NC HS2012 440795
6.NC HS2012 440799
6.NC.T HS2012 440610 Only some part of it
6.NC.T HS2012 440690 Only some part of it
6.NC.T HS2012 440721
6.NC.T HS2012 440722
6.NC.T HS2012 440725
6.NC.T HS2012 440726
6.NC.T HS2012 440727
6.NC.T HS2012 440728
6.NC.T HS2012 440729
6.NC.T HS2012 440799 Only some part of it
7 HS2012 4408
7.C HS2012 440810
7.NC HS2012 440831
7.NC HS2012 440839
7.NC HS2012 440890
7.NC.T HS2012 440831
7.NC.T HS2012 440839
7.NC.T HS2012 440890 Only some part of it
8 HS2012 4410
8 HS2012 4411
8 HS2012 441231
8 HS2012 441232
8 HS2012 441239
8 HS2012 441294
8 HS2012 441299
8.1 HS2012 441231
8.1 HS2012 441232
8.1 HS2012 441239
8.1 HS2012 441294
8.1 HS2012 441299
8.1.C HS2012 441239
8.1.C HS2012 441294 Only some part of it
8.1.C HS2012 441299 Only some part of it
8.1.NC HS2012 441231
8.1.NC HS2012 441232
8.1.NC HS2012 441294 Only some part of it
8.1.NC HS2012 441299 Only some part of it
8.1.NC.T HS2012 441231
8.1.NC.T HS2012 441232 Only some part of it
8.1.NC.T HS2012 441294 Only some part of it
8.1.NC.T HS2012 441299 Only some part of it
8.2 HS2012 4410
8.2.1 HS2012 441012
8.3 HS2012 4411
8.3.1 HS2012 441192
8.3.2 HS2012 441112
8.3.2 HS2012 441113
8.3.2 HS2012 441114 Only some part of it
8.3.3 HS2012 441114 Only some part of it
8.3.3 HS2012 441193
8.3.3 HS2012 441194
9 HS2012 4701
9 HS2012 4702
9 HS2012 4703
9 HS2012 4704
9 HS2012 4705
9.1 HS2012 4701
9.1 HS2012 4705
9.2 HS2012 4703
9.2 HS2012 4704
9.2.1 HS2012 4703
9.2.1.1 HS2012 470321
9.2.1.1 HS2012 470329
9.2.2 HS2012 4704
9.3 HS2012 4702
10 HS2012 4706
10.1 HS2012 470610
10.1 HS2012 470630
10.1 HS2012 470691
10.1 HS2012 470692
10.1 HS2012 470693
10.2 HS2012 470620
11 HS2012 4707
12 HS2012 4801
12 HS2012 4802
12 HS2012 4803
12 HS2012 4804
12 HS2012 4805
12 HS2012 4806
12 HS2012 4808
12 HS2012 4809
12 HS2012 4810
12 HS2012 481151
12 HS2012 481159
12 HS2012 4812
12 HS2012 4813
12.1 HS2012 4801
12.1 HS2012 480210
12.1 HS2012 480220
12.1 HS2012 480254
12.1 HS2012 480255
12.1 HS2012 480256
12.1 HS2012 480257
12.1 HS2012 480258
12.1 HS2012 480261
12.1 HS2012 480262
12.1 HS2012 480269
12.1 HS2012 4809
12.1 HS2012 481013
12.1 HS2012 481014
12.1 HS2012 481019
12.1 HS2012 481022
12.1 HS2012 481029
12.1.1 HS2012 4801
12.1.2 HS2012 480261
12.1.2 HS2012 480262
12.1.2 HS2012 480269
12.1.3 HS2012 480210
12.1.3 HS2012 480220
12.1.3 HS2012 480254
12.1.3 HS2012 480255
12.1.3 HS2012 480256
12.1.3 HS2012 480257
12.1.3 HS2012 480258
12.1.4 HS2012 4809
12.1.4 HS2012 481013
12.1.4 HS2012 481014
12.1.4 HS2012 481019
12.1.4 HS2012 481022
12.1.4 HS2012 481029
12.2 HS2012 4803
12.3 HS2012 480411
12.3 HS2012 480419
12.3 HS2012 480421
12.3 HS2012 480429
12.3 HS2012 480431
12.3 HS2012 480439
12.3 HS2012 480442
12.3 HS2012 480449
12.3 HS2012 480451
12.3 HS2012 480452
12.3 HS2012 480459
12.3 HS2012 480511
12.3 HS2012 480512
12.3 HS2012 480519
12.3 HS2012 480524
12.3 HS2012 480525
12.3 HS2012 480530
12.3 HS2012 480591
12.3 HS2012 480592
12.3 HS2012 480593
12.3 HS2012 480610
12.3 HS2012 480620
12.3 HS2012 480640
12.3 HS2012 4808
12.3 HS2012 481031
12.3 HS2012 481032
12.3 HS2012 481039
12.3 HS2012 481092
12.3 HS2012 481099
12.3 HS2012 481151
12.3 HS2012 481159
12.3.1 HS2012 480411
12.3.1 HS2012 480419
12.3.1 HS2012 480511
12.3.1 HS2012 480512
12.3.1 HS2012 480519
12.3.1 HS2012 480524
12.3.1 HS2012 480525
12.3.1 HS2012 480591
12.3.2 HS2012 480442
12.3.2 HS2012 480449
12.3.2 HS2012 480451
12.3.2 HS2012 480452
12.3.2 HS2012 480459
12.3.2 HS2012 480592
12.3.2 HS2012 481032
12.3.2 HS2012 481039
12.3.2 HS2012 481092
12.3.2 HS2012 481151
12.3.2 HS2012 481159
12.3.3 HS2012 480421
12.3.3 HS2012 480429
12.3.3 HS2012 480431
12.3.3 HS2012 480439
12.3.3 HS2012 480530
12.3.3 HS2012 480610
12.3.3 HS2012 480620
12.3.3 HS2012 480640
12.3.3 HS2012 4808
12.3.3 HS2012 481031
12.3.3 HS2012 481099
12.3.4 HS2012 480593
12.4 HS2012 480240
12.4 HS2012 480441
12.4 HS2012 480540
12.4 HS2012 480550
12.4 HS2012 480630
12.4 HS2012 4812
12.4 HS2012 4813
13.1 HS2012 440910
13.1 HS2012 440929
13.1.C HS2012 440910
13.1.NC HS2012 440929
13.1.NC.T HS2012 440929 Only some part of it
13.2 HS2012 4415
13.2 HS2012 4416
13.3 HS2012 4414
13.3 HS2012 4419 Only some part of it
13.3 HS2012 4420
13.4 HS2012 441810
13.4 HS2012 441820
13.4 HS2012 441840
13.4 HS2012 441850
13.4 HS2012 441860
13.4 HS2012 441871 Only some part of it
13.4 HS2012 441872 Only some part of it
13.4 HS2012 441879 Only some part of it
13.4 HS2012 441890 Only some part of it
13.5 HS2012 940161
13.5 HS2012 940169
13.5 HS2012 940190 Only some part of it
13.5 HS2012 940330
13.5 HS2012 940340
13.5 HS2012 940350
13.5 HS2012 940360
13.5 HS2012 940390 Only some part of it
13.6 HS2012 9406 Only some part of it
13.7 HS2012 4404
13.7 HS2012 4405
13.7 HS2012 4413
13.7 HS2012 4417
13.7 HS2012 442110
13.7 HS2012 442190 Only some part of it
14.1 HS2012 4807
14.2 HS2012 481110
14.2 HS2012 481141
14.2 HS2012 481149
14.2 HS2012 481160
14.2 HS2012 481190
14.3 HS2012 4818
14.4 HS2012 4819
14.5 HS2012 4814
14.5 HS2012 4816
14.5 HS2012 4817
14.5 HS2012 4820
14.5 HS2012 4821
14.5 HS2012 4822
14.5 HS2012 4823
14.5.1 HS2012 482390 Only some part of it
14.5.2 HS2012 482370
14.5.3 HS2012 482320
12.6 HS2012 481420
12.6 HS2012 481490
12.6 HS2012 481710
12.6 HS2012 481720
12.6 HS2012 481730
12.6 HS2012 482020
12.6 HS2012 482030
12.6 HS2012 482040
12.6 HS2012 482050
12.6 HS2012 482090
12.6 HS2012 482110
12.6 HS2012 482190
12.6 HS2012 482210
12.6 HS2012 482290
12.6 HS2012 482320
12.6 HS2012 482340
12.6 HS2012 482361
12.6 HS2012 482369
12.6 HS2012 482370
12.6 HS2012 482390
12.6.1 HS2012 482390 Only some part of it
12.6.2 HS2012 482370
12.6.3 HS2012 482320

JFSQ Item codes

Below are algebraic expressions of the relationships of items in the JFSQ. These are to help in understanding and filling out the JFSQ in a way to minimize inconsistencies.

1 = 1.1 + 1.2

1.1 = 1.1.C + 1.1.NC

1.2 = 1.2.1 + 1.2.2 + 1.2.3

= 1.2.C + 1.2.NC

= 1.2.1.C + 1.2.1.NC + 1.2.2.C + 1.2.2.NC + 1.2.3.C + 1.2.3.NC

1.2.C = 1.2.1.C + 1.2.2.C + 1.2.3.C

1.2.NC = 1.2.1.NC + 1.2.2.NC + 1.2.3.NC

1.2.NC ≥ 1.2.NC.T

1.2.1 = 1.2.1.C + 1.2.1.NC

1.2.2 = 1.2.2.C + 1.2.2.NC

1.2.3 = 1.2.3.C + 1.2.3.NC

3 = 3.1 + 3.2

5 = 5.1 + 5.2

6 = 6.C + 6.NC

6.NC ≥ 6.NC.T

7 = 7.C + 7.NC

7.NC ≥ 7.NC.T

8 = 8.1 + 8.2 + 8.3

8.1 = 8.1.C + 8.1.NC

8.1.NC ≥ 8.1.NC.T

8.2 ≥ 8.2.1

8.3 = 8.3.1 + 8.3.2 + 8.3.3

9 = 9.1 + 9.2 + 9.3

9.2 = 9.2.1 + 9.2.2

9.2.1 >= 9.2.1.1

10 = 10.1 + 10.2

12 = 12.1 + 12.2 + 12.3 + 12.4

12.1 = 12.1.1 + 12.1.2 + 12.1.3 + 12.1.4

12.3 = 12.3.1 + 12.3.2 + 12.3.3 + 12.3.4

13.1 = 13.1.C + 13.1.NC

13.1.NC >= 13.1.NC.T

14.5 >= 14.5.1 + 14.5.2 + 14.5.3

JFSQ Item codes

Below are algebraic expressions of the relationships of items in the JFSQ. These are to

help in understanding and filling out the JFSQ in a way to minimize inconsistencies.

1 = 1.1 + 1.2

1.1 = 1.1.C + 1.1.NC

1.2 = 1.2.1 + 1.2.2 + 1.2.3

= 1.2.C + 1.2.NC

= 1.2.1.C + 1.2.1.NC + 1.2.2.C + 1.2.2.NC + 1.2.3.C + 1.2.3.NC

1.2.C = 1.2.1.C + 1.2.2.C + 1.2.3.C

1.2.NC = 1.2.1.NC + 1.2.2.NC + 1.2.3.NC

1.2.NC ≥ 1.2.NC.T

1.2.1 = 1.2.1.C + 1.2.1.NC

1.2.2 = 1.2.2.C + 1.2.2.NC

1.2.3 = 1.2.3.C + 1.2.3.NC

3 = 3.1 + 3.2

5 = 5.1 + 5.2

6 = 6.C + 6.NC

6.NC ≥ 6.NC.T

7 = 7.C + 7.NC

7.NC ≥ 7.NC.T

8 = 8.1 + 8.2 + 8.3

8.1 = 8.1.C + 8.1.NC

8.1.NC ≥ 8.1.NC.T

8.2 ≥ 8.2.1

8.3 = 8.3.1 + 8.3.2 + 8.3.3

9 = 9.1 + 9.2 + 9.3

9.2 = 9.2.1 + 9.2.2

9.2.1 >= 9.2.1.1

10 = 10.1 + 10.2

12 = 12.1 + 12.2 + 12.3 + 12.4

12.1 = 12.1.1 + 12.1.2 + 12.1.3 + 12.1.4

12.3 = 12.3.1 + 12.3.2 + 12.3.3 + 12.3.4

13.1 = 13.1.C + 13.1.NC

13.1.NC >= 13.1.NC.T

14.5 >= 14.5.1 + 14.5.2 + 14.5.3

Symbol usage

We urge respondents to fill in the questionnaire completely. If, however, this is not

possible, please try to use the following symbols. Blank spaces leave us unsure whether

the data are not available or whether they are zero.

… = not available (please make an estimate!)

0 = nil or less than half the unit indicated

+++ = confidential