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Motivation

• Statistical data editing and imputation (E&I) is a significant but time-consuming
process during the production of official statistics at National Statistical Institutes.

• In order to increase the efficiency of E&I, the Generic Statistical Data Editing Model
(GSDEM) offers some valuable insights on various steps during the latter process
such as the detection of the most influential errors using selective editing and the
error treatment with either interactive or preferably automatic editing.

• Although the selective editing process step had already been developed and
implemented at State Data Agency (Statistics Lithuania), the error treatment
automatization part still needed to be refined.

• The migration of statistical surveys into the uniform platform has motivated Statistics
Lithuania to re-evaluate the current E&I process, as such a platform offers numerous
opportunities for the standardization and integration of the process.
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• Integration of the E&I process according to the Generic Statistical
Business Process Model (GSBPM), and standardization adopting the
Generic Statistical Data Editing Model (GSDEM) as the reference
framework.

• One platform for all E&I process steps – no data file exchange through
e-mail / internal network.

• Convenient user interface for Statistics Divisions, and working E&I
methods under the surface – no programming knowledge required
of users.

• Only influential outliers flagged during selective editing – minimized data
editing time and re-contact with respondents.
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Our goal: Standardized automatic statistical data E&I process
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➢ Efficient resource allocation:

➢ Faster production of official statistics:

➢ Lower response burden:

➢ Increase in quality of statistics:

Employees are able to focus on data

analysis, not on manual review / follow-

up of the collected observations.

Less time is spent on data editing,

hence, on the preparation of statistical

information in general.

Re-contact counts are minimized.

Less manual editing = less human error.
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Desirable outcomes
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• Review: Functions that examine the data to identify potential problems.

• Selection: Functions that select units or fields within units that may need
further treatment, i.e., to be adjusted or imputed.

• Treatment: Functions that change selected data values to improve the
data quality.
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E&I function classification according to GSDEM
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Collaboration between IT Division, State Data Governance Information
System Division, Methodology and Data Science Group, and various
Statistics Divisions at Statistics Lithuania helps reaching the goal:

• IT infrastructure and software solutions needed to develop the working
data editing tool and enable the automatization of the E&I process.

• Development of deterministic, mathematical methods and machine
learning techniques needed to perform outlier detection and correction. To
this end, collaboration with the academic community takes place.

• Expert knowledge needed to evaluate the quality of E&I machine learning
techniques compared to the “traditional” methods.

19UNECE Expert Meeting on Statistical Data Editing

From Design to Implementation phase

07/10/2024



• Standardized reports on statistical data quality as well as E&I process
(using output metadata, i.e., paradata) may be generated for quality
assessment, containing a set of quality indicators.

• Paradata contains indicators and measurements concerning the quality of
the input, output or intermediate versions of the data set (e.g., imputation
rates, number of edit failures and systematic errors).
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Quality of statistical data and E&I process
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Outlier detection study
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Target variable: Enterprise turnover of the accounting period 𝑡 (𝑦𝑡).

Auxiliary variables: Enterprise turnover of the previous period (𝑦𝑡−1), and of the same
period of the previous year (𝑦𝑡−4).

• Deterministic approach:

Edit-rules based on a comparison with
overall trend of other observations
belonging to the same subset of the
population. The acceptance interval is
constructed according to the
interquartile range of observations.

• Outlier detection method:

Hidiroglou-Berthelot method based on
the idea of acceptance boundary that
varies according to the size of a unit.
Here ratios from (i) 𝑦𝑡−1, (ii) 𝑦𝑡−4 to 𝑦𝑡
are compared to the corresponding
overall trend of other observations
belonging to the same subset of the
population (Belcher, 2003).

22

Data validation for the Quarterly Statistical Survey on 
Service Enterprises of Statistics Lithuania (I)
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Target variable: Enterprise turnover of the accounting period 𝑡 (𝑦𝑡).

Auxiliary variable: Enterprise turnover from VAT declarations (𝑦𝑡
∗).

• Selective editing method:

Based on the idea of only looking for influential outliers in order to focus the
most accurate treatment on the corresponding subset of units to reduce the
cost of the data editing, while maintaining the desired level of quality of the
target estimates.

23

Data validation for the Quarterly Statistical Survey on 
Service Enterprises of Statistics Lithuania (II)
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• Predictions for the target variable (quarterly turnover) were obtained using the
contamination model (Di Zio and Guarnera, 2013).

• The impact of the potential error on the target estimate was evaluated using the
score function with a standard structure – the difference between the observed
value of the target variable and its prediction multiplied by the sampling weight
and a suspicion component.

• An impact of the suspicion component on the effectiveness of selective editing
was evaluated by selecting (i) a discrete (Di Zio and Guarnera, 2013), and (ii) a
continuous (Norberg et al., 2010) suspicion component.
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Case study by Burakauskaitė and Nekrašaitė-Liegė (2022)
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Package SeleMix by Guarnera and Buglielli (2013) for performing selective
editing.

Functions:

• ml.est – fitting the contamination model => estimating model parameters,
predicting the “true” values of the target variable.

• sel.edit – identification of influential outliers.
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Used software: R
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• General score function can be expressed as

𝑆𝑖 =
𝑠𝑖𝑤𝑖 𝑦𝑖 − ො𝑦𝑖

𝑇
, 𝑖 = 1,… , 𝑛,

where 𝑦𝑖 denotes the ith observation of the target variable, ො𝑦𝑖 – prediction for the
corresponding observation, 𝑤𝑖 – sampling weight, 𝑠𝑖 – suspicion component, and
𝑇 = σ𝑖=1

𝑛 𝑤𝑖 ො𝑦𝑖 – estimate of the parameter of interest (for instance, sum of predictions).

• Discrete suspicion component is an indicator variable, denoting whether the
corresponding observation is considered suspicious (possibly erroneous) by some
edit-rule, or not, that is,

𝑠𝑖 = ቊ
1 if 𝑦𝑖 is erroneos,
0 otherwise.
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Score function and discrete suspicion component
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• Suppose, we set such an edit-rule that flags an observation 𝑦𝑖 as suspicious if
𝑦𝑖 ∉ ො𝑦(𝐿), ො𝑦(𝑈) , 𝑖 = 1,… , 𝑛, for instance, ො𝑦(𝐿) – 1st quartile, ො𝑦(𝑈) – 3rd quartile of the
vector of predictions ො𝑦𝑖.

• Continuous suspicion component depends on the deviation from the latter
acceptance interval, that is,

ǁ𝑠𝑖 =

ො𝑦𝑖 − 𝜅 ො𝑦𝑖 − ො𝑦(𝐿) − 𝑦𝑖
max ො𝑦(𝑈) − ො𝑦(𝐿), 𝛼 ො𝑦𝑖

if 𝑦𝑖 < ො𝑦𝑖 − 𝜅 ො𝑦𝑖 − ො𝑦 𝐿 ,

𝑦𝑖 − ො𝑦𝑖 − 𝜅 ො𝑦(𝑈) − ො𝑦𝑖
max ො𝑦(𝑈) − ො𝑦(𝐿), 𝛼 ො𝑦𝑖

if 𝑦𝑖 > ො𝑦𝑖 + 𝜅 ො𝑦(𝑈) − ො𝑦𝑖 ,

0 if ො𝑦𝑖 − 𝜅 ො𝑦𝑖 − ො𝑦 𝐿 ≤ 𝑦𝑖 ≤ ො𝑦𝑖 + 𝜅 ො𝑦 𝑈 − ො𝑦𝑖 ,

and 𝑠𝑖 = Τǁ𝑠𝑖 𝜏 + ǁ𝑠𝑖 , with parameters 𝜅 ≥ 0, 𝛼 > 0 and 𝜏 > 0, 𝑖 = 1,… , 𝑛.

27UNECE Expert Meeting on Statistical Data Editing

Continuous suspicion component
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Selective editing efficiency comparison (I)

Figure 1: Relative absolute bias (RAB) dependency on the number of edited influential outliers using

a discrete suspicion component (Burakauskaitė and Nekrašaitė-Liegė, 2022; Figure 1).
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Selective editing efficiency comparison (II)

Figure 2: Relative absolute bias (RAB) dependency on the number of edited influential outliers using

a continuous suspicion component (Burakauskaitė and Nekrašaitė-Liegė, 2022; Figure 2).
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Outlier correction study
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• The objective was to compare different missing data imputation methods on
monthly turnover from the Monthly Statistical Survey on Trade and Catering
Enterprises in Lithuania.

• Different degree of missingness was generated with missing completely at
random (MCAR) and missing at random (MAR) mechanisms.

• Various machine learning based imputation methods were applied to impute the
generated missing values, and the obtained results were compared according to
such accuracy measures as normalized root mean squared error (NRMSE) and
mean absolute error (MAE).
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Case study by Uogelė (2023)
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Packages:

• VIM (Kowarik and Templ, 2016) – k-nearest neighbor imputation according to the
Gower’s distance.

• mice (van Buuren and Groothuis-Oudshoorn, 2011) – imputation of multivariate
data by chained equations.

• missForest (Stekhoven and Bühlmann, 2012) – imputation method based on the
random forest algorithm. Alternative missRanger package by Mayer (2019)
offers an option of using predictive mean matching, while missForest uses mean.

• Amelia (Honaker et al., 2011) – imputation based on a bootstrap expectation-
maximization algorithm, producing multiple output data sets.
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Used software: R
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Methods applied:

• K-nearest neighbor imputation (R function kNN) as the reference method;

• Mean imputation in subsets of the population based on the enterprise size;

• Bayesian linear regression imputation (R function mice, method “norm”);

• Stochastic regression imputation (R function mice, method “norm.nob”);

• Predictive mean matching imputation (R function mice, method “pmm”);

• Non-parametric missing value imputation using random forest (R function
missForest);

• Bootstrapping and expectation-maximization algorithm imputation (R function
amelia).
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Missing value imputation for the Monthly Statistical Survey 
on Trade and Catering Enterprises of Statistics Lithuania (I)
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Auxiliary information used for predicting enterprise turnover of the accounting
period 𝑡 (𝑦𝑡):

• Enterprise turnover of the previous period (𝑦𝑡−1);

• Enterprise turnover from VAT declarations of the previous period (𝑦𝑡−1
∗ );

• Enterprise turnover from VAT declarations of the accounting period (𝑦𝑡
∗);

• Categorical variable of four-digit numerical code (classes) of economic activity
group;

• Categorical variable for 7 enterprise size groups based on the number of
employees.
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Missing value imputation for the Monthly Statistical Survey 
on Trade and Catering Enterprises of Statistics Lithuania (II)
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Table 1: NRMSE and MAE of monthly enterprise turnover imputation under MCAR response

mechanism (Uogelė, 2023; Table 6).

Missing

NRMSE MAE (× 𝟏𝟎𝟑)

5% 10% 20% 30% 5% 10% 20% 30%

Mean 0.83 0.77 0.75 0.70 212.08 160.98 145.31 159.84

MissForest 0.09 0.13 0.12 0.16 19.95 17.42 16.50 24.76

MissRanger 0.15 0.18 0.13 0.16 28.35 21.42 17.09 23.13

Missing data imputation under MCAR assumption
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Table 2: NRMSE and MAE of monthly enterprise turnover imputation under MAR response

mechanism (Uogelė, 2023; Table 21).

Missing

NRMSE MAE (× 𝟏𝟎𝟑)

5% 10% 20% 30% 5% 10% 20% 30%

MICE-pmm 0.54 0.41 0.51 0.47 88.70 90.10 84.79 97.32

MICE-norm 0.11 0.07 0.24 0.10 25.11 22.98 30.50 24.43

MICE-norm.nob 0.12 0.07 0.14 0.09 24.67 21.28 25.40 24.90

kNN 0.56 0.43 0.43 0.47 120.55 118.75 92.18 112.65

MissForest 0.18 0.14 0.17 0.26 34.89 33.66 34.39 42.85

MissRanger 0.27 0.23 0.21 0.24 42.08 45.75 39.66 43.69

Missing data imputation under MAR assumption
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• The planned statistical data E&I process is subject to minor change due to
project execution limitations, such as IT infrastructure, software solution
and knowledge capacity.

• Possible future plans include continuous research on statistical data
editing methods, as well as collaboration with academic community, and
capacity building at Statistics Lithuania.

Any suggestions would be highly appreciated!
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Final remarks
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