
Building the new Banff
An open-source data editing system based on
GSDEM concepts

Darren Gray

Senior Methodologist, Statistics Canada

UNECE Expert Meeting on Statistical Data Editing

7-9 October 2024, Vienna

Banff 3.0

• Release: January 2025

– Internal release -> user testing -> external release

• Set of Python packages

– Open-source (including C code)

– No SAS dependencies

– Shared via GitLab (internally) and GitHub (externally)

• Includes an overhauled processor

– Redesigned to enable complex process flows

– Based on concepts & terminology from GSDEM

2

Today’s presentation

• Overview

• Generic Statistical Data Editing Model (GSDEM)

• The Banff procedures – what makes them special?

• The new Banff processor

• Building a catalogue of Banff-compatible modules

• Remarks

3

Key questions

Could you / would you use the Banff processor as a data
editing production platform?

Within the data editing community, is there interest in
building and maintain a catalogue of modular, Banff-

compatible data editing tools?

4

 Overview

 Banff Procedures

 Custom modules

 GSDEM

 Banff Processor

 Remarks

A history of Banff

• Generalized edit and imputation system developed and maintained by Statistics
Canada

• Features nine data editing procedures performing various data editing tasks,

including outlier detection, error localization, and donor imputation

• Includes Banff Processor: metadata-driven process flow manager

• Current version runs on SAS architecture

6

A history of Banff

GEIS

(Generalized Edit and
Imputation System)

1988

Banff, Banff Processor

2002

Banff 3.0

2025

Users:

• Statistics Canada
• Canadian government agencies

• Other National Statistical Offices

• Private institutions

7

Plans for change

• Future development of Statistics Canada's Edit and Imputation System Banff
(Thomas, 2017)

• The evolution of Banff in the context of modernization (Gray, 2018)

– Standardizing the Banff procedures

– Improving the Banff processor

• Banff’s next step: an open-source data editing system for advanced tools and

collaboration (Gray, 2022)

– Move to open-source

8

Banff’s next step: an open-source data editing system for
advanced tools and collaboration (Gray, 2022)
Expert Meeting on Statistical Data Editing | UNECE

9

https://unece.org/statistics/events/SDE2022

Changing environments

• Proliferation of free and/or open-source data editing tools:

– Python and R packages

– Awesome official statistics software

• Need / desire to modernize

– New problems to solve

– Modern tools, e.g., ML
Spring 2023: Statistics Canada
makes decision to significantly
reduce SAS footprint by 2028

10

https://github.com/SNStatComp/awesome-official-statistics-software

Changes for Banff 3.0

• Completely free and open-source

– Primary languages are Python, C

– Some Python package dependencies for data management

• Banff procedures (ErrorLoc, DonorImp, Outlier, etc.)

– Python modules (instead of SAS procedures)

– Underlying statistical functions remain unchanged

– Minor updates –> mostly standardization

• Banff processor

– Completely redesigned, with new features

• Dissemination and support via GitLab & GitHub

11

12

Generalized solutions – open-source distribution

Key messages

• Work in the open by default

• Enable external collaboration

• Adopt open-source licensing

• Private to public transition when ready

• Leverage robust internal tools (GitLab,
Artifactory, Xray)

• Public sharing on industry platforms
(GitHub, PyPI, CRAN)

• Maintain control (accept/reject external
collaboration, issues)

• Pre-release internally first to ensure
code quality

 Overview

 Banff Procedures

 Custom modules

 GSDEM

 Banff Processor

 Remarks

• Developed under the High-Level Group for the Modernisation of Official Statistics
(HLG-MOS)

• The GSDEM is envisaged as a “standard reference for statistical data editing”

that provides “standard terminology and models” and facilitates “understanding,
communication, practice and development in the field of statistical data editing”.

• Topic covered in GSDEM:

– Functions and methods

– Metadata for the data editing process

– SDE flow models

GSDEM - Statistical Data Editing - UNECE Statswiki

Generic Statistical Data Editing Model

14

https://statswiki.unece.org/display/sde/GSDEM

SDE Process

15

SDE Process Flows

What elements are required to describe a specific SDE process?

• Overall process broken down into a limited number of process steps, a set of specific functions
executed in an organized way for a specific SDE purpose.

• Navigation between process steps is managed by rule-based process controls.

• The process flow describes the sequencing and conditional logic among different process steps.

16

Process steps, functions and methods

• Process steps typically contains a considerable number of functions with
specified methods that are executed in an organized way.

• SDE function categories:

– Review: Functions that examine the data to identify potential problems

– Selection: Functions that select units or fields within units for specified further treatment

– Treatment: Functions that change the data in a way that is considered appropriate to
improve data quality.

• Methods describe how the functions are performed.

17

SDE Process Flows

Process step

Data state

Trivial process control

Non-trivial process control

18

 Overview

 Banff Procedures

 Custom modules

 GSDEM

 Banff Processor

 Remarks

Banff’s purpose

• GEIS / Banff was developed to process business data with specific needs such
as:

– Scale issues and distribution of business data (e.g., revenue, employment)

– Linear relationships between variables

• Banff status flags play a key role in the system, as outputs from one procedure

serve as inputs for subsequent ones

FieldID

ID

FieldID

ID

FieldID

ID

20

Design, review and selection functions

Procedure Functions performed Compatible with
linear edits

VerifyEdits (design) Evaluates a set of edits for consistency and redundancy;
can optionally generate extremal points and implied
edits.

Yes

EditStats (review) Determines the number of records within a dataset that
pass, miss, or fail each edit; provides summary statistics
only.

Yes

ErrorLoc (selection) For records that fail to pass a set of edits, identifies the
minimum number of variables that must be amended to
pass all edits, following the Fellegi-Holt error localization
paradigm.

Yes

Outlier (selection) Outlier detection using the Hidiroglou-Berthelot or
Sigma-Gap methods.

No

21

Treatment functions

Procedure Functions performed Compatible with
linear edits

Deterministic Deterministic imputation for records where only one
value (or vector of values) will pass all edits.

Yes

DonorImputation Nearest-neighbour donor imputation ensuring that all
amended records pass specified edits.

Yes

MassImputation Donor imputation without edit constraints; generally
used for blocks of missing data.

No

Prorate Prorates record values to meet specified edit constraints. Yes

Estimator Estimator (or model-based) imputation; users can
choose from a number of pre-defined algorithms or
create their own; may reference auxiliary and historical
data.

No

22

Are the Banff procedures still needed?

• Some still provide unique functionality, e.g., donor imputation:

– Unique distance metric to account for scale issues within business data

– Automated selection of auxiliary variables for distance calculation

– Efficient search algorithm to find eligible donors to satisfy linear constraints

• For many, similar functionality (sometimes using different methods) can already

be found elsewhere:

– ErrorLoc: errorlocate (R package)

– Outlier: univOutl (R package)

– Estimator: simputation (R package)

23

https://cran.r-project.org/web/packages/errorlocate/index.html
https://cran.r-project.org/web/packages/univOutl/index.html
https://github.com/markvanderloo/simputation

Conversion plan

• Convert all nine procedures to maintain consistency

– Minimize changes to C code

– Swap SAS wrapper for Python wrapper

• Standardize the procedures

– Consistent inputs, outputs and parameters across the functions

– Use of input and output status flags

• A few minor improvements

24

25

Banff procedure – data flow diagram

26

 Banff Processor

 General

 Process flows

 Process controls

 Overview

 Banff Procedures

 Custom modules

 GSDEM

 Remarks

Banff
Processor

Fast and
efficient
system

Enables
complex

process flows

Easy to use
and support

Facilitates
research and
development

Encourages
open-source
collaboration

Process production tasks at similar or faster

speeds than current system
Open to future enhancements such as parallel

processing
Addition of process blocks

and process controls

Streamlined design

Improved outputs and
debugging options

General application

A central repository for compatible
modules

Easy to test out new E&I methods

Objectives

28

Banff Processor

Statistical data

Input Metadata

Processor parameters

Transformed data

Output metadata

Inputs / Outputs

Executes SDE process flow,
handles data management

29

Statistical data

InData (mandatory)

HistData (optional)

Other

Primary target of the SDE process

Historical dataset (used by some Banff procedures)

Statistical data inputs

Other statistical data required by plugins

Supported inputs formats: Apache Parquet (preferred), Apache Feather, CSV (not recommended), SAS
Dataset (testing only)

Supported outputs: Parquet, CSV (for testing)

30

Input metadata

Processor metadata

InStatus (optional)

Other

Specifications for the SDE process flow and all process steps (XML files)

Banff status flags from a previous process

Metadata inputs

Other metadata required by plugins

31

Processor parameters

• job_ID: Process identifier
• unit_ID: Unique record identifier on input data
• Location of processor input XML metadata
• Location of custom plugins
• Other parameters such as random seed, output file format, etc…

Processor parameters

32

Processor Metadata

• Describes the complete SDE process flow, including parameters for all process
steps

• Processor metadata can be categorized as follows:

– Describing the overall process flow

– Parameters specific to Banff built-in procedures

– Parameters for custom procedures

– Additional metadata common to multiple procedures

• Banff processors reads metadata from XML files

– Users can design and edit processor metadata using Excel template, and then convert to XML

– Point-and-click interface planned for future

33

Outputs

• Key outputs:

– Transformed statistical data

– Final status flags

– Full list of status flags

• Diagnostics:

– High-level: Run-time for each process step

– Detailed log of the complete process

• Other

– Additional outputs generated by Banff procedures or custom plugins

34

 Banff Processor

 General

 Process flows

 Process controls

 Overview

 Banff Procedures

 Custom modules

 GSDEM

 Remarks

Elements of the Banff process flow

Process step

Process control

Process block

01

02

03

Executes either a built-in Banff process or a custom, user-defined process.
Typically performs SDE functions such as review, selection, or treatment.

Consists of one or more ordered
sub-processes, which can be
process steps or other process
blocks.

Associated with specific sub-processes in a process block, they apply logical
conditions to determine when a sub-process runs, and for which data.

36

Process Blocks

Trivial process
block

01 Consists of a single process step

Simple process
block

01

02

03

Calls one or more process steps

Complex
process block

01

02

03

Calls at least one other process block

Process controls can be assigned to any
sub-process

01

02

03

37

Process Flow Metadata

jobid seqno controlid process specid

Main 1 ErrorLoc ErrorLoc_specs

Main 2 JOB EditImpute

Main 3 Outlier Outlier1

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute

Main 6 Filter1 JOB Rounding

Main 7 Plugin_3 Custom_specs_3

Main 8 ErrorLoc ErrorLoc_specs

EditImpute 1 Deterministic

EditImpute 2 DonorImp Donor_specs_1

EditImpute 3 Filter2 Plugin_2

OutlierImpute 1 Estimator Estimator_specs

OutlierImpute 2 Filter3 JOB Rounding

Rounding 1 Prorate Prorate_specs

Rounding 2 Plugin_1 Custom_specs_1

Users can specify and edit process blocks
using the Banff Processor template in
Microsoft Excel, which is converted to xml
files for the Processor to read.

The JOBS table includes columns to
specify the complete process flow.

38

Process Flow Metadata
jobid seqno controlid process specid

Main 1 ErrorLoc ErrorLoc_specs

Main 2 JOB EditImpute

Main 3 Outlier Outlier1

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute

Main 6 Filter1 JOB Rounding

Main 7 Plugin_3 Custom_specs_3

Main 8 ErrorLoc ErrorLoc_specs

EditImpute 1 Deterministic

EditImpute 2 DonorImp Donor_specs_1

EditImpute 3 Filter2 Plugin_2

OutlierImpute 1 Estimator Estimator_specs

OutlierImpute 2 Filter3 JOB Rounding

Rounding 1 Prorate Prorate_specs

Rounding 2 Plugin_1 Custom_specs_1

Process blocks are defined by a single
JobID (e.g., “Main”). Each row in a
process block calls a sub-process.

Ordering of the sub-processes is
specified by the SeqNo column.

Another process block, “OutlierImpute”,
with two sub-processes

39

Process Flow Metadata
jobid seqno controlid process specid

Main 1 ErrorLoc ErrorLoc_specs

Main 2 JOB EditImpute

Main 3 Outlier Outlier1

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute

Main 6 Filter1 JOB Rounding

Main 7 Plugin_3 Custom_specs_3

Main 8 ErrorLoc ErrorLoc_specs

EditImpute 1 Deterministic

EditImpute 2 DonorImp Donor_specs_1

EditImpute 3 Filter2 Plugin_2

OutlierImpute 1 Estimator Estimator_specs

OutlierImpute 2 Filter3 JOB Rounding

Rounding 1 Prorate Prorate_specs

Rounding 2 Plugin_1 Custom_specs_1

The ControlID column indicates a
process control is associated with
the current sub-process.

The parameters for process controls
are found in the ProcessControls
metadata table and linked by the
ControlID.

40

Process Flow Metadata
jobid seqno controlid process specid

Main 1 ErrorLoc ErrorLoc_specs

Main 2 JOB EditImpute

Main 3 Outlier Outlier1

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute

Main 6 Filter1 JOB Rounding

Main 7 Plugin_3 Custom_specs_3

Main 8 ErrorLoc ErrorLoc_specs

EditImpute 1 Deterministic

EditImpute 2 DonorImp Donor_specs_1

EditImpute 3 Filter2 Plugin_2

OutlierImpute 1 Estimator Estimator_specs

OutlierImpute 2 Filter3 JOB Rounding

Rounding 1 Prorate Prorate_specs

Rounding 2 Plugin_1 Custom_specs_1

The Process column specifies which
type of process to run. Options are:

• Job: Calls another process block
• One of the nine built-in Banff

processes
• A user-defined plugin

41

Process Flow Metadata
jobid seqno controlid process specid

Main 1 ErrorLoc ErrorLoc_specs

Main 2 JOB EditImpute

Main 3 Outlier Outlier1

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute

Main 6 Filter1 JOB Rounding

Main 7 Plugin_3 Custom_specs_3

Main 8 ErrorLoc ErrorLoc_specs

EditImpute 1 Deterministic

EditImpute 2 DonorImp Donor_specs_1

EditImpute 3 Filter2 Plugin_2

OutlierImpute 1 Estimator Estimator_specs

OutlierImpute 2 Filter3 JOB Rounding

Rounding 1 Prorate Prorate_specs

Rounding 2 Plugin_1 Custom_specs_1

The SpecID column tells the Banff
processor how to run the given
process.
• When Process = JOB, SpecID must

refer to another Process Block by
the JobID

• For all other processes (built-in or
plugins), SpecID indicates which
parameters to apply, from another
metadata table

Note: Some processes may not
require specifications.

42

Process Flow Metadata
jobid seqno controlid process specid

Main 1 ErrorLoc ErrorLoc_specs

Main 2 JOB EditImpute

Main 3 Outlier Outlier1

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute

Main 6 Filter1 JOB Rounding

Main 7 Plugin_3 Custom_specs_3

Main 8 ErrorLoc ErrorLoc_specs

EditImpute 1 Deterministic

EditImpute 2 DonorImp Donor_specs_1

EditImpute 3 Filter2 Plugin_2

OutlierImpute 1 Estimator Estimator_specs

OutlierImpute 2 Filter3 JOB Rounding

Rounding 1 Prorate Prorate_specs

Rounding 2 Plugin_1 Custom_specs_1

This table consists of four process
blocks:
• Two complex process blocks
• Two simple process blocks

Note that the Main process block calls
other process steps and process
blocks more than once:
• ErrorLoc is called in steps 1 and 8
• The Rounding process block is

called in step 6, and again in step 2
of OutlierImpute

43

Visualizing the Banff process flow

• When the Banff processor is called, the resulting process flow can be

visualized as a “tree” data structure.

– Process steps and process blocks are nodes in the tree, connected by links

– Each process block consists of a “parent node with ordered children”

– Some nodes have specific terms in the data structure

• Root node: Process Block called by the user

• Internal node (inner node / branch node): Process blocks

• External node / Leaf: Node without any children -> Process step

44

Visualizing the Banff process flow

45

 Banff Processor

 General

 Process flows

 Process controls

 Overview

 Banff Procedures

 Custom modules

 GSDEM

 Remarks

Process Blocks

• Process blocks allow users to organize the
process flow in a logical way, improving

readability and convenience, but do not change
the resulting process flow

• When combined with process controls, allows
users to specify complex process flows

47

jobid seqno controlid process specid

Main 1 ErrorLoc ErrorLoc_specs

Main 2 JOB EditImpute

Main 3 Outlier Outlier1

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute

Main 6 Filter1 JOB Rounding

Main 7 Plugin_3 Custom_specs_3

Main 8 ErrorLoc ErrorLoc_specs

EditImpute 1 Deterministic

EditImpute 2 DonorImp Donor_specs_1

EditImpute 3 Filter2 Plugin_2

OutlierImpute 1 Estimator Estimator_specs

OutlierImpute 2 Filter3 JOB Rounding

Rounding 1 Prorate Prorate_specs

Rounding 2 Plugin_1 Custom_specs_1

controlid targetfile parameter value

Filter1 Indata row_filter Province = "Ontario"

Filter2 Indata column_filter UnitID, Revenue, Expenses

Filter3 Indata row_filter Revenue ge 1,000,000

Filter3 Instatus row_filter Process = Outlier and Status = "FTI"

Jobs table

ProcessControls table

Process controls that show up in the Jobs metadata
table are specified in the ProcessControls table,
linked by the ControlID.

48

Process Filters

• ControlID: Process control identifier

• TargetFile: Input file to filter

• Parameter

– row_filter: Filters the target file using an SQL WHERE clause from value field

– column_filter: Filters target file to remove columns that don’t appear in value field

controlid targetfile parameter value

Filter1 Indata row_filter Province = "Ontario"

Filter2 Indata column_filter UnitID, Revenue, Expenses

Filter3 Indata row_filter Revenue ge 1,000,000

Filter3 Instatus row_filter Process = Outlier and Status = "FTI"

49

Process Filters

• Process filters of indata can be used to control which data flows through
process blocks or process steps. Examples:

– Process blocks to treat subsets of population, such as specific geographic regions or
industries

– Process blocks to treat subsets of variables

• Process filters of instatus can be used to limit the input selection flags.

Examples:

– A process block that only treats outliers

– A process block that only treats records failing specific edits

• Multiple filters can be applied to the same process control

• Expressions use duckdb SQLite syntax.

50

https://duckdb.org/docs/sql/expressions/overview

Process Filters

• Process filters offer a convenient and safe solution
to common data management needs

– In the current processor, users manipulate the statistical
data directly using custom programs “ExcludeData” and
“AddExcludedData”

– Easy to see which steps in the process are affected

– Removes risk of human error

51

The master files are not
affected by process

filters

52

Identify influential units01

Interactive editing02

Automatic editing03

Example: treatment of influential units

By applying consecutive process filters with converse
conditions (influential unit = yes / no), we can create
most of the logical conditions we require

53

 Overview

 Banff Procedures

 Custom modules

 GSDEM

 Banff Processor

 Remarks

Barriers to the adoption of new technology

• Resources: time, personnel, money

• Statistics Canada experience

– Between production schedule, not a lot of time to test new methods

– Data editing frequently performed by junior methodologists who transfer

frequently between projects

– Production systems are somewhat rigid

– Transition from SAS to new programming languages (e.g., R, Python) is
already overwhelming

55

Barriers to the adoption of new technology

Research

• Identify potential
new methods

• Review available
packages

• Assess suitability

Integration

• Learn new
programming
languages

• Incorporate into
production flow

Test

• Design and
execute suitable
tests

• Share results

We want
methodologists and
statisticians focused on
this step

Use Banff Processor to
standardize and
facilitate these steps

56

Building a catalogue of Banff modules

• Objective: build a catalogue of Banff-compatible modules (plugins)

that are simple to integrate into Banff processor

– Open-source, community-driven

– Documented

– Vetting and testing system

• Give methodologists more time to focus on important work:

– Test new methods

– Design effective SDE process flows

57

Modularity

Error
localization

Other selection

procedures

Statistical data editing process flow

Within the Banff processor, modules
performing the same SDE functions

should be interchangeable

This makes it easy to test new
functions, and assess their impact on

the overall process flow

58

Plugin structure

• General structure:

1. Declare dependencies

2. Import data and parameters

3. Execute plugin code

4. Save outputs

• Banff processor manages data management

59

Process Step

OutStatus

OutData InData

InStatus

CurrentData

CurrentStatus

CurrentData

CurrentStatus

ProcessLog ProcessLog

ProcessFilter
Update

Append

60

Plugin structure

• InData -> OutData
– Plugins performing treatment functions (e.g., imputation) should produce an

OutData object

– OutData should have same structure as InData
• Requires unique identifier <unit_id>

• Field names should remain the same

• Only transformed data required; not a complete copy of InData

• InStatus -> OutStatus
– InStatus only required if plugin makes use of existing status flags

– OutStatus is encouraged
• For review and selection functions, should include FTI flags

• For treatment functions, should include imputation flags

61

""" Custom Plugin Name """

Import packages required by the plugin

class plugin_name:

 """Description of plugin and parameters."""

 @classmethod

 def execute(cls, processor_data):

 # Execution of plugin

 try:

 # Import indata and/or instatus as needed

 indata = processor_data.get_dataset("indata", format="pandas")

 instatus = processor_data.get_dataset("instatus", format="pandas")

 # Import uservars from metadata table as dictionary

 uservars_dict = processor_data.current_uservars

 # Import other parameters from metadata tale as needed

 unit_id_name = processor_data.input_params.unit_id

 by_var = processor_data.by_varlist

 ### EXECUTE PLUGIN CODE HERE ###

 # Save copies of outdata or outstatus

 processor_data.outstatus = outstatus_final

 processor_data.outdata = outdata_final

 # Banff processor automates remaining data management

Registers all plugin classes to the factory

def register(factory):

 factory.register("plugin_name", plugin_name)

62

Plugins in development

• Banff team has already started developing plugins

• Some open-source packages already investigated:

– scikit-learn (Python)

– missForest (R)

• Packages developed for official statistics:

– simputation

– errorlocate

– VIM

63

https://scikit-learn.org/stable/
https://github.com/stekhoven/missForest
https://cran.r-project.org/web/packages/simputation/index.html
https://cran.r-project.org/web/packages/errorlocate/index.html
https://cran.r-project.org/web/packages/VIM/index.html

Ongoing work

• Continue to improve plugins

– Improve template and documentation

– Add automated features, e.g., auto-generation of imputation flags

• Begin building repository

– Work with existing clients to convert custom SAS programs into plugins

– Fill in gaps in existing Banff functionality

– Add popular SDE packages from GitHub - SNStatComp/awesome-official-statistics-software:
An awesome list of statistical software for creating and accessing official statistics

• Develop testing and vetting of plugins

64

https://github.com/SNStatComp/awesome-official-statistics-software
https://github.com/SNStatComp/awesome-official-statistics-software

Custom user module

Community-vetted and
maintained modules

Banff-vetted and
maintained modules

Core Banff modulesExternal tools

e.g., missForest

e.g., validate package

Awesome official
statistics software

Other NSI software

65

e.g., CANCEIS

Building a catalogue of Banff modules

65

 Overview

 Banff Procedures

 Custom modules

 GSDEM

 Banff Processor

 Remarks

Key takeaways

• Banff 3.0 will be free and open-source

– Internal release January 2025

• Procedures

– Underlying statistical methods remain the same

– Changes to input/output structure, parameters

– Updated to standard structure

• Processor

– Major overhaul

– Introduction of process blocks and process controls

• Banff plugins

– Custom modules that can be called within the Processor

67

Final Remarks

• Two years later, have we achieved our objectives?

– For the most part: yes

– Aim to add some additional features after launch

• What challenges were faced migrating from SAS to open-source?

– Required a team open to trying new things, and strong collaboration between

methodology and IT partners

– Needed to rethink our approach to a lot of problems (avoid “lift and shift”)

68

Acknowledgements

• Banff methodology team:

– Management: Steve Matthews, Etienne Rassart

– Development: Marouane Seffal

– Consultation: Mark Stinner, Jonathan Baillargeon, Joël Bissonnette

• IT partners:

– Management: Greg Ludwinski, Dany Brazeau, Martin Brière

– Developers: Stephen Arsenault, Andrew Dombowsky, Anh Nguyen

69

Key questions

Could you / would you use the Banff processor as a data
editing production platform?

Within the data editing community, is there interest in
building and maintain a catalogue of modular, Banff-

compatible data editing tools?

70

Questions? Contact us: infostats@statcan.gc.ca

Thank you!

darren.gray@statcan.gc.ca

banff@statcan.gc.ca

https://www.statcan.gc.ca/eng/sc/mobile-applications
https://www.statcan.gc.ca/eng/sc/podcasts
https://www.facebook.com/statisticscanada
https://instagram.com/statcan_eng/
https://ca.linkedin.com/company/statcan
https://www.reddit.com/user/StatCanada/
https://x.com/StatCan_eng
https://www.youtube.com/statisticscanada
mailto:infostats@statcan.gc.ca
mailto:darren.gray@statcan.gc.ca
mailto:banff@statcan.gc.ca

