Building the new Banff

An open-source data editing system based on
GSDEM concepts

Darren Gray
Senior Methodologist, Statistics Canada

UNECE Expert Meeting on Statistical Data Editing
7-9 October 2024, Vienna

- - i~l
A B s Canada

Banff 3.0

« Release: January 2025 h
— Internal release -> user testing -> external release F pgt On

« Set of Python packages
— Open-source (including C code)
— No SAS dependencies
— Shared via GitLab (internally) and GitHub (externally)

 Includes an overhauled processor
— Redesigned to enable complex process flows
— Based on concepts & terminology from GSDEM

] R e Canada

Today’s presentation

« Overview

« (Generic Statistical Data Editing Model (GSDEM)

« The Banff procedures — what makes them special?
« The new Banff processor

 Building a catalogue of Banff-compatible modules
« Remarks

- - 1+l
] R e Canada

Key questions

Could you / would you use the Banff processor as a data
editing production platform?

Within the data editing community, is there interest in
building and maintain a catalogue of modular, Banff-
compatible data editing tools?

- - 1+l
] R e Canada

= Custom modules

= Remarks

] R e Canada

A history of Banff

« Generalized edit and imputation system developed and maintained by Statistics
Canada

« Features nine data editing procedures performing various data editing tasks,
including outlier detection, error localization, and donor imputation

 Includes Banff Processor: metadata-driven process flow manager
« Current version runs on SAS architecture

] R e Canada

A history of Banff

GEIS ﬂ

(Generalized Edit and
Imputation System) Banff 3.0

1988 2025

Banff, Banff Processor

2002
Users:

Statistics Canada C

Canadian government agencies)Sas
Other National Statistical Offices

Private institutions

] R e Canada

Plans for change

 Future development of Statistics Canada's Edit and Imputation System Banff
(Thomas, 2017)

« The evolution of Banff in the context of modernization (Gray, 2018)
— Standardizing the Banff procedures
— Improving the Banff processor

« Banff's next step: an open-source data editing system for advanced tools and
collaboration (Gray, 2022)

— Move to open-source

] R e Canada

Banff’s next step: an open-source data editing system for
advanced tools and collaboration (Gray, 2022)
Expert Meeting on Statistical Data Editing | UNECE

What’s our goal?

Access to variety
of advanced data
A system to design and process editing tools
production-scale data editing, with an
expanding catalogue of expert-vetted, &
community-supported tools, accessible Flexible,
intuitive .~ Freeand
to everyone. process flow . accessible
manager '

Canada

] R e Canada

https://unece.org/statistics/events/SDE2022

Changing environments

 Proliferation of free and/or open-source data editing tools:
— Python and R packages
— Awesome official statistics software

 Need / desire to modernize

— New problems to solve Spring 2023: Statistics Canada
— Modern tools, e.g., ML makes decision to significantly
reduce SAS footprint by 2028

A

Osas R

] R e Canada

https://github.com/SNStatComp/awesome-official-statistics-software

Changes for Banff 3.0

Completely free and open-source
— Primary languages are Python, C
— Some Python package dependencies for data management

Banff procedures (ErrorLoc, DonorImp, Outlier, etc.)
— Python modules (instead of SAS procedures)

— Underlying statistical functions remain unchanged

— Minor updates —> mostly standardization

Banff processor
— Completely redesigned, with new features

Dissemination and support via GitLab & GitHub

] R e Canada

Key messages

* Work in the open by default

* Enable external collaboration

* Adopt open-source licensing

* Private to public transition when ready

* Leverage robust internal tools (GitLab,
Artifactory, Xray)

* Public sharing on industry platforms
(GitHub, PyPI, CRAN)

* Maintain control (accept/reject external
collaboration, issues)

* Pre-release internally first to ensure
code quality

Statistics

Statistique
Canada

Canada

i+l

Distributing Generalized Solutions to internal and external clients - Conceptual Diagram

StatCan |
g Collaborative Development

External - Private

<

StatCan Developers

External Developers

e

®

Private GitHub

Open Code

External DevSecOps %

External Repository

External - General Fublic

Future iteration

Make the external collaboration
General Public

Jira v
r I
iy Open Code
i Fackages
| Gitlab Services Packages) 9
(=}
e
Open-Source Software License (LGPL)
) v — Ny,
Robust DevSecOps | & Packages =1
Code Review / Internal Testing @ ;
r_/% “ | + | External Clients
(Cloud Native Plateform | | Internal Artifactory
‘ #1— used in @ E
\.‘.- -'a' '\.\- -'a' :
3&
Internal Clienis

Canada

= Custom modules

= Remarks

] R e Canada

Generic Statistical Data Editing Model

« Developed under the High-Level Group for the Modernisation of Official Statistics
(HLG-MOS)
« The GSDEM is envisaged as a "standard reference for statistical data editing”

that provides “standard terminology and models” and facilitates “understanding,
communication, practice and development in the field of statistical data editing”.

« Topic covered in GSDEM:

— Functions and methods
— Metadata for the data editing process
— SDE flow models

GSDEM - Statistical Data Editing - UNECE Statswiki

I*I gte.;art]g',ggs Statistigue Canadﬂ

Canad

https://statswiki.unece.org/display/sde/GSDEM

SDE Process

Input SDE Process Output

{}

Constraining factors: Monetary, Human, IT, Infrastructure

] R e Canada

SDE Process Flows

What elements are required to describe a specific SDE process?

« Qverall process broken down into a limited number of process steps, a set of specific functions
executed in an organized way for a specific SDE purpose.

« Navigation between process steps is managed by rule-based process controls.
« The process flow describes the sequencing and conditional logic among different process steps.

] R e Canada

Process steps, functions and methods

« Process steps typically contains a considerable number of functions with
specified methods that are executed in an organized way.

« SDE function categories:
— Review: Functions that examine the data to identify potential problems
— Selection: Functions that select units or fields within units for specified further treatment
— Treatment: Functions that change the data in a way that is considered appropriate to
improve data quality.

« Methods describe how the functions are performed.

] R e Canada

Raw

SDE Process Flows !

Domain editing
Editing systematic errors

h
Edited DOS

_______ > Selective editing

Process step

es w Mo

) Data state @b @

W h 4
— TrIVIaI process COI’]tI’O| Interactive editing Automatic editing
W
<> Non-trivial process control (aeness)
Macro editing

18

= Custom modules

= Remarks

] R e Canada

Banff's purpose

« GEIS / Banff was developed to process business data with specific needs such
as.
— Scale issues and distribution of business data (e.g., revenue, employment)
— Linear relationships between variables

« Banff status flags play a key role in the system, as outputs from one procedure
serve as inputs for subsequent ones

FieldID N FieldID) FieldID

- s

] R e Canada

Design, review and selection functions

Procedure Functions performed Compatible with
linear edits

VerifyEdits (design) Evaluates a set of edits for consistency and redundancy; Yes
can optionally generate extremal points and implied
edits.

EditStats (review) Determines the number of records within a dataset that Yes
pass, miss, or fail each edit; provides summary statistics
only.

ErrorLoc (selection) For records that fail to pass a set of edits, identifies the Yes
minimum number of variables that must be amended to
pass all edits, following the Fellegi-Holt error localization
paradigm.

Outlier (selection) Outlier detection using the Hidiroglou-Berthelot or No
Sigma-Gap methods.

] R e Canada

Treatment functions

Procedure Functions performed Compatible with
linear edits

Deterministic Deterministic imputation for records where only one Yes
value (or vector of values) will pass all edits.

DonorImputation Nearest-neighbour donor imputation ensuring that all Yes
amended records pass specified edits.

MassImputation Donor imputation without edit constraints; generally No
used for blocks of missing data.

Prorate Prorates record values to meet specified edit constraints. Yes

Estimator Estimator (or model-based) imputation; users can No

choose from a number of pre-defined algorithms or
create their own; may reference auxiliary and historical
data.

] R e Canada

Are the Banff procedures still needed?

« Some still provide unique functionality, e.g., donor imputation:
— Unique distance metric to account for scale issues within business data
— Automated selection of auxiliary variables for distance calculation
— Efficient search algorithm to find eligible donors to satisfy linear constraints

« For many, similar functionality (sometimes using different methods) can already
be found elsewhere:
— ErrorLoc: errorlocate (R package)
— Qutlier: univOutl (R package)
— Estimator: simputation (R package)

] R e Canada

https://cran.r-project.org/web/packages/errorlocate/index.html
https://cran.r-project.org/web/packages/univOutl/index.html
https://github.com/markvanderloo/simputation

Conversion plan

« Convert all nine procedures to maintain consistency
— Minimize changes to C code
— Swap SAS wrapper for Python wrapper

 Standardize the procedures
— Consistent inputs, outputs and parameters across the functions
— Use of input and output status flags

« A few minor improvements

] R e Canada

proc donorimputation
..-_': ,_.1_._-. :.|_|-.-::.'
mindonors=2

pcentdonors=0.1
acceptnegative = banff.donorimp(
edits="x1>=-5; min_donors=2,

x1<=15" percent_donors=0.1,
X2>=30; accept_negative=True,
¥1+x2<=50:" edits="""x1>=-5;

. ¥1<=15;

hy province city; x2>=30;

id IDENT; X1+x2<=50;""",
by="province city",
unit_id='IDENT",
trace=True,

etc. (datasets)

] R e Canada /\/\

Banff

N Procedure [C)
rrow
Base Columnar A
Python Format¥ |I]

e | M

EaniT

1 a e g im
L

Banff
Gendys Processor
User (optional)

f [|

Input & “STC Algorithms
Output Code"

Client Managed
Storage

Statistical Data

(Imputed & 5Status files)
Fanmats: pet feather, obc.

] R e Canada

—/ L) _

= General
= Process flows
= Process controls

= Custom modules

= Remarks

I*I Statistics Statistique
Canada Canada

Canada

Objectives

Process production tasks at similar or faster

speeds than current system ';?fsitcgil
Open to future enhancements such as parallel system Addition of process blocks
processing and process controls
Encourages Enables
open-source complex

collaboration B a n ff process flows
General application

A central repository for compatible Processor

modules

Streamlined design

Facilitates Improved outputs and
research and Easy to use q bp) tp
development and support ebugging options

Easy to test out new E&I methods

- - 1+l
] R e Canada

Inputs / Outputs

A

Statistical data Transformed data

Input Metadata Banff Processor > Output metadata

Processor parameters ———

Executes SDE process flow,
handles data management

] R e Canada

Statistical data inputs

Statistical data ’

InData (mandatory) Primary target of the SDE process
HistData (optional) Historical dataset (used by some Banff procedures)
Other Other statistical data required by plugins

Supported inputs formats: Apache Parquet (preferred), Apache Feather, CSV (not recommended), SAS
Dataset (testing only)

Supported outputs: Parquet, CSV (for testing)

] R e Canada

Metadata inputs

Input metadata

Processor metadata Specifications for the SDE process flow and all process steps (XML files)
InStatus (optional) Banff status flags from a previous process
Other Other metadata required by plugins

] R e Canada

Processor parameters

Processor parameters

« job_ID: Process identifier

« unit_ID: Unique record identifier on input data
 Location of processor input XML metadata
 Location of custom plugins

« Other parameters such as random seed, output file format, etc...

Statistics Statistique

Canada Canada Canadﬁ

Processor Metadata

« Describes the complete SDE process flow, including parameters for all process
steps

« Processor metadata can be categorized as follows:
— Describing the overall process flow
— Parameters specific to Banff built-in procedures
— Parameters for custom procedures
— Additional metadata common to multiple procedures

« Banff processors reads metadata from XML files
— Users can design and edit processor metadata using Excel template, and then convert to XML
— Point-and-click interface planned for future

] R e Canada

Outputs

« Key outputs:
— Transformed statistical data
— Final status flags
— Full list of status flags
 Diagnostics:
— High-level: Run-time for each process step
— Detailed log of the complete process

 QOther

— Additional outputs generated by Banff procedures or custom plugins

] R e Canada

—/ L) _

= General
= Process flows
= Process controls

= Custom modules

= Remarks

I*I Statistics Statistique
Canada Canada

Canada

Elements of the Banff process flow

Process step Executes either a built-in Banff process or a custom, user-defined process.
Typically performs SDE functions such as review, selection, or treatment.

a ™\ Consists of one or more ordered
» 01)
sub-processes, which can be
Process block > 02 process steps or other process
blocks.
_ J > > 03

Associated with specific sub-processes in a process block, they apply logical

Process control g : :
conditions to determine when a sub-process runs, and for which data.

I*I Statistics Statistique

Canada Canada Ca,na,da

Process Blocks

.
Trivial process (5T Consists of a single process step
block
Simple process | |—: 8; Calls one or more process steps
block J 03
.
Complex [ey] Calls at least one other process block
process block | e 03

) _: 01 Process controls can be assigned to any
LN _,[= I] sub-process

] R e Canada

Process Flow Metadata

jobid segno (controlid process specid
Users can specify and edit process blocks ~ Main 1 ErrorLoc Errorloc_specs
using the Banff Processor template in Main 2 108 Editimpute
Microsoft Excel, which is converted to xml |Main 3 Outlier Outlierl
files for the Processor to read. Main 4 Outlier Outlier2
Main 5 JOB Outlierimpute
The JOBS table includes columns to Main 6|Filter1 JoB Rounding
specify the complete process flow. Main 7 Plugin_3 Custom_specs_3
Main 8 ErrorLoc ErrorLoc_specs
Editimpute 1 Deterministic
Editimpute 2 Donorlmp Donor_specs_1
Editimpute 3|Filter2 Plugin_2
OutlierImpute 1 Estimator Estimator_specs
OutlierImpute 2|Filter3 JOB Rounding
Rounding 1 Prorate Prorate_specs
Rounding 2 Plugin_1 Custom_specs_1

] R e Canada

Process Flow Metadata

jobid segno |controlid process specid

Main 1 ErrorLoc ErrorLoc_specs
Main 2 JOB Editimpute

Main 3 Outlier Outlierl

Main 4 Outlier Outlier2

Main 5 JOB Outlierlmpute
Main 6|Filterl JOB Rounding

Main 7 Plugin_3 Custom_specs_3
Main 8 ErrorLoc ErrorLoc_specs
Editimpute 1 Deterministic

Editimpute 2 Donorlmp Donor_specs_1
Editimpute 3|Filter2 Plugin_2

Outlierimpute 1 Estimator Estimator_specs
Outlierimpute 2|Filter3 JOB Rounding
Rounding 1 Prorate Prorate_specs
Rounding 2 Plugin_1 Custom_specs_1

Bl s

Statistique
Canada

\

Process blocks are defined by a single
JobID (e.g., "Main”). Each row in a
process block calls a sub-process.

Ordering of the sub-processes is
specified by the SeqNo column.

Another process block, “OutlierImpute”,
with two sub-processes

Canada

Process Flow Metadata

jobid segno |controlid process specid

Main 1 ErrorLoc ErrorLoc_specs
Main 2 JOB Editimpute

Main 3 Outlier Outlierl

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute
Main 6|Filterl JOB Rounding

Main 7 Plugin_3 Custom_specs_3
Main 8 ErrorLoc ErrorLoc_specs
Editimpute 1 Deterministic

Editimpute 2 Donorlmp Donor_specs_1
Editimpute 3|Filter2 Plugin_2

Outlierimpute 1 Estimator Estimator_specs
Outlierimpute 2|Filter3 JOB Rounding
Rounding 1 Prorate Prorate_specs
Rounding 2 Plugin_1 Custom_specs_1

Bl s

Statistique
Canada

The ControlID column indicates a
process control is associated with
the current sub-process.

The parameters for process controls
are found in the ProcessControls
metadata table and linked by the
ControlID.

Canada

Process Flow Metadata

jobid segno |controlid process specid

Main 1 ErrorLoc ErrorLoc_specs
Main 2 JOB Editimpute

Main 3 Outlier Outlierl

Main 4 Outlier Outlier2

Main 5 JOB OutlierImpute
Main 6|Filterl JOB Rounding

Main 7 Plugin_3 Custom_specs_3
Main 8 ErrorLoc ErrorLoc_specs
Editimpute 1 Deterministic

Editimpute 2 Donorimp Donor_specs_1
Editimpute 3|Filter2 Plugin_2

Outlierimpute 1 Estimator Estimator_specs
Outlierimpute 2|Filter3 JOB Rounding
Rounding 1 Prorate Prorate_specs
Rounding 2 Plugin_1 Custom_specs_1

Bl s

Statistique
Canada

The Process column specifies which
type of process to run. Options are:

« Job: Calls another process block

« One of the nine built-in Banff
processes

« A user-defined plugin

Canada

Process Flow Metadata

jobid segno |controlid process specid

Main 1 ErrorLoc ErrorLoc_specs
Main 2 JOB Editimpute

Main 3 Outlier Outlierl

Main 4 Outlier Outlier2

Main 5 JOB Outlierlmpute
Main 6|Filterl JOB Rounding

Main 7 Plugin_3 Custom_specs_3
Main 8 ErrorLoc ErrorLoc_specs
Editimpute 1 Deterministic

Editimpute 2 Donorlmp Donor_specs_1
Editimpute 3|Filter2 Plugin_2

Outlierimpute 1 Estimator Estimator_specs
Outlierimpute 2|Filter3 JOB Rounding
Rounding 1 Prorate Prorate_specs
Rounding 2 Plugin_1 Custom_specs_1

Bl s

Statistique
Canada

The SpecID column tells the Banff
processor how to run the given
process.

* When Process = JOB, SpecID must
refer to another Process Block by
the JobID

« For all other processes (built-in or
plugins), SpecID indicates which
parameters to apply, from another
metadata table

Note: Some processes may not
require specifications.

Canada

Process Flow Metadata

jobid segno |controlid process specid

Main 1 ErrorLoc ErrorLoc_specs
Main 2 JOB Editimpute

Main 3 Outlier Outlierl

Main 4 Outlier Outlier2

Main 5 JOB Outlierlmpute
Main 6|Filterl JOB Rounding

Main 7 Plugin_3 Custom_specs_3
Main 8 ErrorLoc ErrorLoc_specs
Editimpute 1 Deterministic

Editimpute 2 Donorimp Donor_specs_1
Editimpute 3|Filter2 Plugin_2

Outlierimpute 1 Estimator Estimator_specs
Outlierimpute 2|Filter3 JOB Rounding
Rounding 1 Prorate Prorate_specs
Rounding 2 Plugin_1 Custom_specs_1

Bl s

Statistique
Canada

This table consists of four process
blocks:

« Two complex process blocks

« Two simple process blocks

Note that the Main process block calls

other process steps and process

blocks more than once:

« ErrorLoc is called in steps 1 and 8

« The Rounding process block is
called in step 6, and again in step 2
of OutlierImpute

Canada

Visualizing the Banff process flow

« When the Banff processor is called, the resulting process flow can be
visualized as a “tree” data structure.
— Process steps and process blocks are nodes in the tree, connected by links
— Each process block consists of a “parent node with ordered children”

— Some nodes have specific terms in the data structure
« Root node: Process Block called by the user
 Internal node (inner node / branch node): Process blocks
« External node / Leaf: Node without any children -> Process step

] R e Canada

Visualizing the Banff process flow

Leaf/external nodes

. N
Root process —
—9P
block T
™
p
’—
H- o7

] R e Canada

—/ L) _

= General
= Process flows
= Process controls

= Custom modules

= Remarks

I*I Statistics Statistique
Canada Canada

Canada

Process Blocks

« Process blocks allow users to organize the
process flow in a logical way, improving
readability and convenience, but do not change

the resulting process flow

 When combined with process controls, allows
users to specify complex process flows

-------)I Selective editing |

v Y
1 Critical l 1 MNon critical l

1
1
1
1
1
1
1
1
1
: | Interactive edifing
1
1
1
1
1
1
1
1
1
1

] R e Canada

Jobs table

jobid seqno |controlid process specid

Main 1 ErrorLoc ErrorLoc_specs

Main 2 JOB Editimpute

Main 3 Outlier Outlier Process controls that show up in the Jobs metadata
e : - e e table are specified in the ProcessControls table,
Main 6|Filterl JOB Rounding |II’1|(€C| by the COI’]tFO[[D.

Main 7 Plugin_3 Custom_specs_3

Main 8 ErrorLoc ErrorLoc_specs

Editimpute 1 Deterministic

Editimpute 2 Donorlmp Donor_specs_1

Editimpute 3|Filter2 Plugin_2

Outlierlmpute 1 Estimator Estimator_specs

Outlierlmpute 2|Filter3 JOB Rounding

Rounding 1 Prorate Prorate_specs

Rounding 2 Plugin_1 Custom_specs_1

ProcessControls table

controlid [targetfile |parameter value

Filterl Indata row_filter Province = "Ontario"

Filter2 Indata column filter UnitlD, Revenue, Expenses

Filter3 Indata row_filter Revenue ge 1,000,000

Filter3 Instatus row_filter Process = Outlier and Status = "FTI"

] R e Canada

Process Filters

controlid targetfile parameter value

Filterl Indata row_filter Province = "Ontario"

Filter2 Indata column_filter UnitID, Revenue, Expenses

Filter3 Indata row_filter Revenue ge 1,000,000

Filter3 Instatus row_filter Process = Outlier and Status ="FTI"

« ControlID: Process control identifier
« TargetFile: Input file to filter
 Parameter

— row_filter: Filters the target file using an SQL WHERE clause from va/ue field
— column_filter: Filters target file to remove columns that don’t appear in value field

I*I Statistics Statistique

Canada Canada Canadﬁ

Process Filters

 Process filters of indata can be used to control which data flows through
process blocks or process steps. Examples:

— Process blocks to treat subsets of population, such as specific geographic regions or
industries

— Process blocks to treat subsets of variables

 Process filters of /instatus can be used to limit the input selection flags.
Examples:
— A process block that only treats outliers
— A process block that only treats records failing specific edits

« Multiple filters can be applied to the same process control
« Expressions use duckdb SQLite syntax.

] R e Canada

https://duckdb.org/docs/sql/expressions/overview

Process Filters

 Process filters offer a convenient and safe solution Man O EXCLUDEDATA DARY.FARMS
Main 10 EXCLUDEDATA CHEESE_FARMS
to common data management needs ok |, P Omeny
— In the current processor, users manipulate the statistical e e
data directly using custom programs “ExcludeData” and Main | 15 ERRORLOC CH_ERR 01
- . Main 16 DONORIMPUTATION CH_DON_01
AddExcludedData Main 17 DONORIMPUTATION CH_DON_01
. . Main 18 DONORIMPUTATION CH_DON_01
— Easy to see which steps in the process are affected Main 19 PRORATE CH_PRO.01
Main 20 ADDEXCLUDEDDATA DAIRY_FARMS

— Removes risk of human error

] R e Canada

i+l

Statistics
Canada

Imputed File

Status All

Process Filter

InData
(Filtered)

InStatus
(Filtered)

Cumulative

The master files are not
affected by process
filters

OutData

OutStatus

Status All

Statistique
Canada

» Imputed File
A
S Status All
A
Update

Cumulative
Status All

Canada

Example: treatment of influential units

ves @ Mo [}_ , » 01 Identify influential units

— =P 02 Interactive editing

(Critical) | MNon critical)) g .
— =P 03 Automatic editing

T T 9 A Y,

Interactive edifing Automatic editing

By applying consecutive process filters with converse
conditions (influential unit = yes / no), we can create
most of the logical conditions we require

Micro-edited
business

] R e Canada

= Custom modules

= Remarks

] R e Canada

Barriers to the adoption of new technology

» Resources: time, personnel, money

« Statistics Canada experience
— Between production schedule, not a lot of time to test new methods

— Data editing frequently performed by junior methodologists who transfer
frequently between projects

— Production systems are somewhat rigid

— Transition from SAS to new programming languages (e.g., R, Python) is
already overwhelming

] R e Canada

Barriers to the adoption of hew technology

o Identify potential We want
R h Eew_ methOfﬂllsbI __ methodologists and
® REVIEW avallabie P I
€Searc packages statisticians focused on
» Assess suitability this step

e Learn new
programming
languages

e Incorporate into
production flow

Integration

Use Banff Processor to
— standardize and

« Design and facilitate these steps

execute suitable

Test tests

¢ Share results

] R e Canada

Building a catalogue of Banff modules

« Objective: build a catalogue of Banff-compatible modules (plugins)
that are simple to integrate into Banff processor
— Open-source, community-driven
— Documented
— Vetting and testing system

« Give methodologists more time to focus on important work:
— Test new methods
— Design effective SDE process flows

] R e Canada

Modularity

Statistical data editing process flow

l

Within the Banff processor, modules
performing the same SDE functions
should be interchangeable

v
This makes it easy to test new < e T >

functions, and assess their impact on ! Other selection
the overall process flow procedures

- - 1+l
] R e Canada

Plugin structure

» General structure:
1. Declare dependencies
2. Import data and parameters
3. Execute plugin code
4. Save outputs
« Banff processor manages data management

Canada

I*I Statistics Statistique
Canada Canada

i+l

Statistics
Canada

CurrentData

CurrentStatus

ProcessFilter

ProcessLog

Statistique
Canada

P> CurrentData
A
- CurrentStatus
A
Update
Append
> ProcessLog

Canada

Plugin structure

 InData -> OutData

— Plugins performing treatment functions (e.q., imputation) should produce an
OutData object

— OutData should have same structure as InData
» Requires unique identifier <unit_id>
 Field names should remain the same
« Only transformed data required; not a complete copy of InData

« InStatus -> OutStatus
— InStatus only required if plugin makes use of existing status flags

— QOutStatus is encouraged
 For review and selection functions, should include FTI flags
 For treatment functions, should include imputation flags

] R e Canada

Custom Plugin Name
Import packages required by the plugin

class plugin_name:

"""Description of plugin and parameters."""
@classmethod
def execute(cls, processor _data):

Execution of plugin

try:

Import indata and/or instatus as needed
indata = processor_data.get_dataset("indata", format="pandas")
instatus = processor_data.get dataset("instatus", format="pandas")

Import uservars from metadata table as dictionary
uservars_dict = processor_data.current_uservars

Import other parameters from metadata tale as needed
unit_id name = processor_data.input_params.unit_id
by var = processor_data.by varlist

EXECUTE PLUGIN CODE HERE

Save copies of outdata or outstatus

processor_data.outstatus = outstatus final

processor_data.outdata = outdata_final

Banff processor automates remaining data management
Registers all plugin classes to the factory

def register(factory): 62
factory.register("plugin name", plugin_name)

Plugins in development

« Banff team has already started developing plugins
« Some open-source packages already investigated:
— scikit-learn (Python)
— missForest (R)
« Packages developed for official statistics:

— simputation
— errorlocate

— VIM

] R e Canada

https://scikit-learn.org/stable/
https://github.com/stekhoven/missForest
https://cran.r-project.org/web/packages/simputation/index.html
https://cran.r-project.org/web/packages/errorlocate/index.html
https://cran.r-project.org/web/packages/VIM/index.html

Ongoing work

« Continue to improve plugins
— Improve template and documentation
— Add automated features, e.qg., auto-generation of imputation flags
« Begin building repository
— Work with existing clients to convert custom SAS programs into plugins
— Fill in gaps in existing Banff functionality
— Add popular SDE packages from GitHub - SNStatComp/awesome-official-statistics-software:
An awesome list of statistical software for creating and accessing official statistics

» Develop testing and vetting of plugins

] R e Canada

https://github.com/SNStatComp/awesome-official-statistics-software
https://github.com/SNStatComp/awesome-official-statistics-software

Building a catalogue of Banff modules

External tools Core Banff modules e.g, CANCEIS

i i °_0 _

| Awesome official ! % B_a nff. vetted and e.g.,, missForest

| statistics software ; . maintained modules /
A R e

‘; ﬁ g S e.g, validate package
i i ®

; Other NSI software | D Custom user module

f
5\

] R e Canada

= Custom modules

= Remarks

] R e Canada

Key takeaways

Banff 3.0 will be free and open-source
— Internal release January 2025

Procedures

— Underlying statistical methods remain the same
— Changes to input/output structure, parameters
— Updated to standard structure

Processor

— Major overhaul

— Introduction of process blocks and process controls
Banff plugins

— Custom modules that can be called within the Processor

] R e Canada

Final Remarks

« Two years later, have we achieved our objectives?
— For the most part: yes
— Aim to add some additional features after launch

« What challenges were faced migrating from SAS to open-source?

— Required a team open to trying new things, and strong collaboration between
methodology and IT partners

— Needed to rethink our approach to a lot of problems (avoid “lift and shift™)

] R e Canada

Acknowledgements

« Banff methodology team:
— Management: Steve Matthews, Etienne Rassart
— Development: Marouane Seffal
— Consultation: Mark Stinner, Jonathan Baillargeon, Joél Bissonnette

o IT partners:
— Management: Greg Ludwinski, Dany Brazeau, Martin Briere
— Developers: Stephen Arsenault, Andrew Dombowsky, Anh Nguyen

] R e Canada

Key questions

Could you / would you use the Banff processor as a data
editing production platform?

Within the data editing community, is there interest in
building and maintain a catalogue of modular, Banff-
compatible data editing tools?

] R e Canada

Thank you!

darren.gray@statcan.gc.ca
banff@statcan.gc.ca

OO0

Questions? Contact us: infostats@statcan.gc.ca

] R e Canada

https://www.statcan.gc.ca/eng/sc/mobile-applications
https://www.statcan.gc.ca/eng/sc/podcasts
https://www.facebook.com/statisticscanada
https://instagram.com/statcan_eng/
https://ca.linkedin.com/company/statcan
https://www.reddit.com/user/StatCanada/
https://x.com/StatCan_eng
https://www.youtube.com/statisticscanada
mailto:infostats@statcan.gc.ca
mailto:darren.gray@statcan.gc.ca
mailto:banff@statcan.gc.ca

