Outlier Identification and Adjustment for Time Series UNECE Expert Meeting on Statistical Data Editing, Wien, 7-9 October.

Markus Fröhlich

Vienna, 8. October 2024

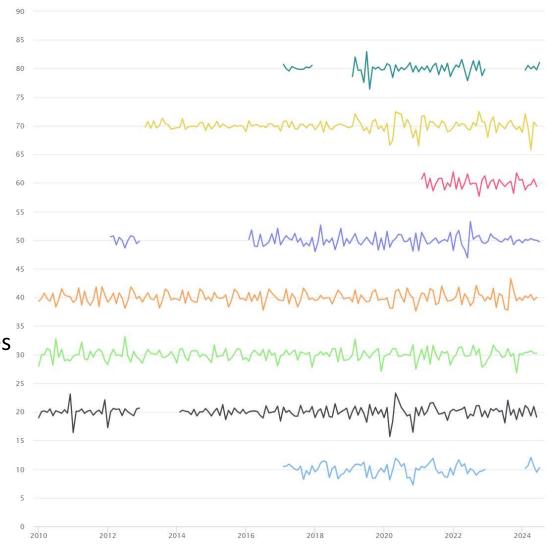
www.statistik.at

Independent statistics for evidence-based decision making

Overview

• Motivation

• Outlier Adjustment for Time Series


- Requirements
- Standard procedures
- <u>Robust Model</u>

Short Term Statistics (NACE Sections B-F)

- Organized as cut-off survey
 - Total of 65 000 enterprises and establishments
 - Survey: about 10 000 enterprises
 - ~ 17% in terms of the number of enterprises
 - ~ 95% in terms of total turnover
 - Mandatory participation

Short Term Statistics

- Publication
 - Early Estimates t+30
 - Indices (Production, Turnover, ...) at t+40
 - Absolute Numbers at t+70
 - Absolute Numbers at t+1Y (12 months)
- Correction of "Data Errors" for Early Estimates
- Automatic procedure
- Time Series Approach

Outlier Adjustment - Requirements

- "Assist" data editing process
- Number of outliers should not exceed 20%, rather much less
- Focus on outliers at the very end of time series
- Identification procedure shoud be conservative

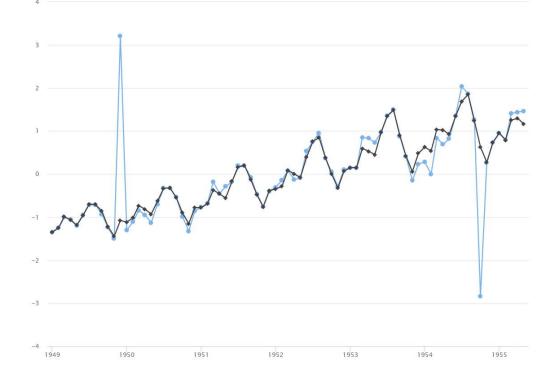
Outlier Adjustment – Standard Procedures

• Seasonal Adjustment Methods

- X13-Arima/Seats, Tramo/Seats
 - Time series with more than 35 Observations (monthly)
 - Sensitivity of Outlier Identification

<u>R Procedures</u>

- tsoutliers from Forecast Package
- tsoutliers Package
- for time series of any length

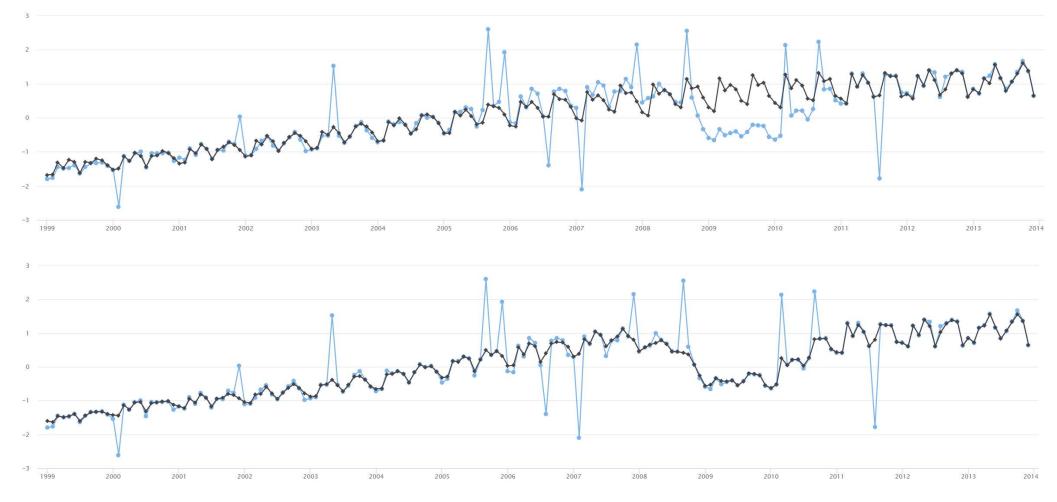

Outlier Adjustment and Replacement

• Robust time-series approach based on Rousseeuw et al.

$$y_t = \sum_{a=0}^{A} \alpha_a t^a + \left[\sum_{b=1}^{B} \left(\beta_{b,1} \cos\left(\frac{2\pi b}{12}t\right) + \beta_{b,2} \sin\left(\frac{2\pi b}{12}t\right)\right)\right] \left(1 + \sum_{g=1}^{G} \gamma_g t^g\right) + \delta_1 I(t \ge \delta_2) + e_t,$$

Outlier Adjustment and Replacement

- Estimation with Support Vector Regression
 - applicable for nonlinear models
 - robust approach

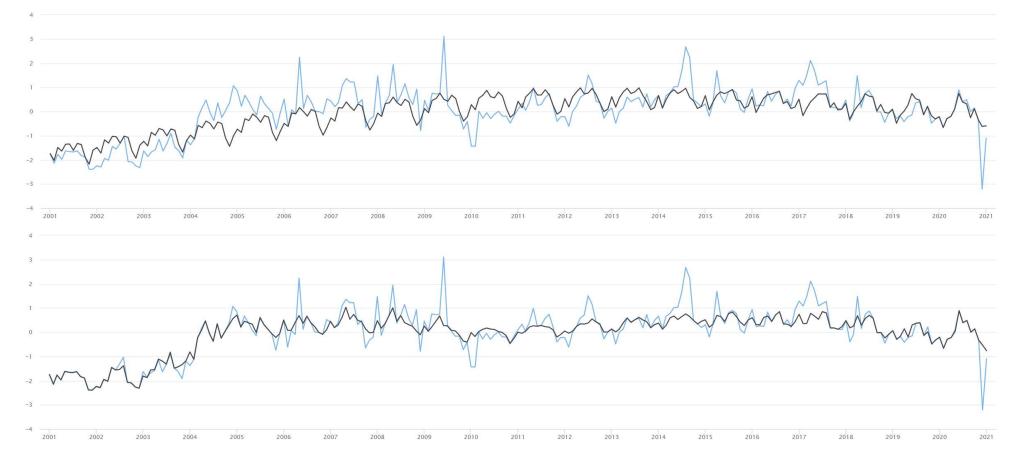


www.statistik.at

Identification of Level Shifts

- Sequentially: $log(y_t) = \sum_{a=0}^{A} \alpha_a t^a + \left[\sum_{b=1}^{B} \left(\beta_{b,1} cos \left(\frac{2\pi b}{12} t \right) + \beta_{b,2} sin \left(\frac{2\pi b}{12} t \right) \right) \right] + \delta_1 I(t \ge \delta_2) + e_t,$
 - OLS regression with level shift position between 4,...,N-3
 - Fixing level shift for regression with minimal residual variance <u>AND</u> significant size of level shift

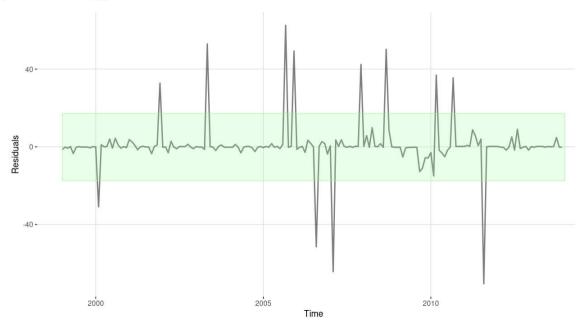
Identification of Level Shifts


www.statistik.at

Slide 10

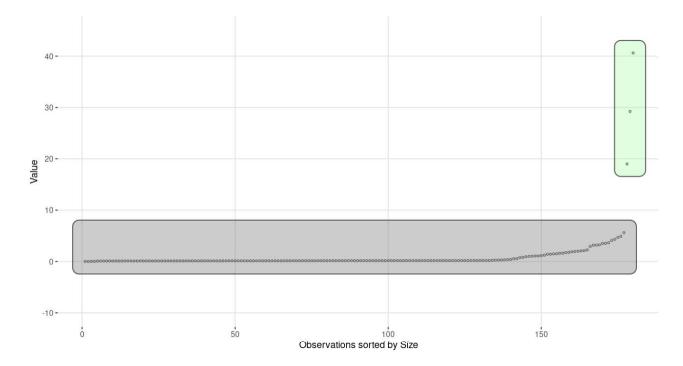
Long Time Series

- Changing seasonality
 - Split time series into smaller parts
 - Select segments (or windows) of the time series randomly
 - Fit the model for each segment with SVR
 - Repeat b times


Long Time Series

Identification of Outliers

• Outlier-identification based on Residuals


 $[P_{10} - 3 * (P_{90} - P_{10}); P_{90} + 3 * (P_{90} - P_{10})]$

www.statistik.at

Identification of Outliers

- Outlier-identification based on Residuals
- With K-Means Clustering

www.statistik.at

Results – Long Time Series (168-180 Obs)

Method	Outliers	Low	Zero	Exact	High
SVR	1	0.04	0.00	0.80	0.16
SVR kmeansH	1	0.00	0.00	0.81	0.19
SVR kmeans	1	0.00	0.00	0.62	0.38
SVRD	1	0.01	0.00	0.63	0.36
SVRD kmeansH	1	0.01	0.00	0.88	0.11
SVRD kmeans	1	0.01	0.00	0.87	0.12
tsoutliers	1	0.01	0.00	0.49	0.49
Tramo/Seats	1	0.00	0.00	0.44	0.56
Tramo/Seats AL	1	0.00	0.00	0.81	0.19
X13 Arima	1	0.00	0.00	0.74	0.26
tsoutliers FCT	1	0.06	0.00	0.66	0.28

Results – Long Time Series (168-180 Obs)

Method	Outliers	Low	Zero	Exact	High
SVR	3	0.08	0.01	0.70	0.21
SVR kmeansH	3	0.16	0.00	0.81	0.03
SVR kmeans	3	0.12	0.00	0.85	0.03
SVRD	3	0.04	0.00	0.74	0.21
SVRD kmeansH	3	0.14	0.01	0.74	0.11
SVRD kmeans	3	0.14	0.01	0.74	0.11
tsoutliers	3	0.05	0.02	0.65	0.28
Tramo/Seats	3	0.00	0.00	0.46	0.53
Tramo/Seats AL	3	0.01	0.00	0.80	0.19
X13 Arima	3	0.00	0.00	0.73	0.27
tsoutliers FCT	3	0.18	0.00	0.58	0.24

Results – Long Time Series (168-180 Obs)

Method	Outliers	Low	Zero	Exact	High
SVR	7	0.34	0.01	0.60	0.05
SVR kmeansH	7	0.36	0.01	0.61	0.02
SVR kmeans	7	0.36	0.00	0.62	0.02
SVRD	7	0.30	0.06	0.49	0.16
SVRD kmeansH	7	0.56	0.05	0.31	0.08
SVRD kmeans	7	0.56	0.05	0.31	0.08
tsoutliers	7	0.23	0.05	0.53	0.19
Tramo/Seats	7	0.01	0.01	0.46	0.52
Tramo/Seats AL	7	0.02	0.01	0.78	0.19
X13 Arima	7	0.01	0.00	0.67	0.31
tsoutliers FCT	7	0.46	0.00	0.38	0.16

Results – Short Series (16, 8 Obs)

Method	Outliers	Low	Zero	Exact	High
SVR	1	0.27	0.00	0.69	0.03
SVR kmeansH	1	0.03	0.01	0.88	0.08
SVR kmeans	1	0.03	0.01	0.88	0.08
tsoutliers	1	0.15	0.00	0.63	0.22
tsoutliers FCT	1	0.12	0.00	0.73	0.14
SVR	2	0.69	0.01	0.30	0.00
SVR kmeansH	2	0.19	0.02	0.77	0.02
SVR kmeans	2	0.19	0.02	0.77	0.02
tsoutliers	2	0.26	0.01	0.57	0.16
tsoutliers FCT	2	0.26	0.01	0.62	0.11
SVR	1	0.17	0.04	0.79	0.00
SVR kmeansH	1	0.11	0.04	0.85	0.00
SVR kmeans	1	0.11	0.04	0.85	0.00
tsoutliers	1	0.29	0.00	0.58	0.13
tsoutliers FCT	1	0.44	0.00	0.49	0.06

[1] Findley DF, Monsell BC, Bell WR, Otto MC, Chen BC. New Capabilities and Methods of the X12-ARIMA Seasonal-Adjustment Program. Journal of Business and Economic Statistics. 1998;16:127-52. DOI: <u>http://dx.doi.org/10.2307/1392565</u>.

[2] Kowarik A, de Cillia G, Meraner A, Fröhlich M. Persephone, Production-Ready Seasonal Adjustment in R with RJDemetra. In: Conference on New Techniques and Technologies for Official Statistics (NTTS)[Internet]; 2021.

[3] Hyndman RJ, Khandakar Y. Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software. 2008;27. DOI: http://dx.doi.org/10.18637/jss.v027.i03.

[4] Rousseeuw PJ, Perrotta DC, Riani M, Hubert M. Robust Monitoring of Time Series with Application to Fraud Detection. Econometrics and Statistics. 2019. DOI: <u>https://doi.org/10.1016/j.ecosta.2018.05.001</u>.

[5] Fröhlich M. Outlier Identification and Adjustment for Time Series. Statistical Journal of the IAOS, vol. 40, Issue 2, pp. 389-402, 2024.

Please address queries to Markus Fröhlich Mail: markus.froehlich@statistik.gv.at

STATISTIK AUSTRIA Guglgasse 13, 1110 Wien

> STATISTICS AUSTRIA The Information Manager

Independent statistics for evidence-based decision making

