

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE

CONFERENCE OF EUROPEAN STATISTICIANS

Expert Meeting on Statistical Data Editing

7-9 October 2024, Vienna

Current work on automatic multisource editing at Statistics

Netherlands

Sander Scholtus, Arnout van Delden, Rob Willems, Frank Aelen (Statistics Netherlands, the Netherlands)

s.scholtus@cbs.nl

This work is supported by Eurostat grant SMP-ESS-2023-EBS-IBA. The views expressed in this paper are

those of the authors and do not necessarily reflect the policies of Statistics Netherlands.

I. Introduction

1. As part of a new integrated uniform production system for business statistics, Statistics Netherlands

aims to develop a system for simultaneous editing of variables that are observed across different data sources.

In this way inconsistencies between statistics could be identified and resolved as early as possible, which

should increase overall data quality and is considered more efficient and effective than the current approach,

where data for different statistics are edited mostly in isolation. (An exception is the so-called Large Cases Unit

which already performs manual integrated editing for the largest and most complicated enterprise groups.) As a

result, sometimes large inconsistencies between statistics are found at a late stage, e.g., during the production of

National Accounts. The new approach will involve top-down interactive editing across statistics, using score

functions to identify the most influential inconsistencies. We refer to Vaasen-Otten et al. (2022) for a

discussion of top-down multisource editing and of the wider context of the new production system.

2. In addition to top-down interactive editing, we aim to introduce automatic editing of other

inconsistencies across data sources where possible. An initial approach and results for automatic multisource

editing from a pilot study were previously presented in Scholtus et al. (2022). In the present paper, we will give

an update of the work that is being done in this area. Currently, there is a project at Statistics Netherlands to

develop automatic multisource editing further for eventual use in regular statistical production. This project is

supported as part of a grant from Eurostat for timelier, more relevant and more integrated European business

statistics. The project will run from January 2024 until June 2025.

3. Regarding automatic editing across statistics, the main aims of the project are, first, to improve the

quality of automatically edited data by introducing better edit rules and incorporating more unit-specific

information, and second, to evaluate the effects of automatic editing on the quality of statistical output. While

the project is still ongoing, we will present some ideas and initial developments. The paper is organized as

follows. Section II provides a summary of the automatic editing methodology used in this project, including a

toy example to illustrate the various process steps. Sections III and IV discuss ideas for improving and

evaluating the quality of automatic editing, respectively.

II. Methodology

A. Automatic editing methods

4. Before turning to multisource editing, we will give a brief overview of existing methods for automatic

editing of a single data source. Two main classes of methods that are currently in use for automatic editing of

business statistics are: deductive correction and error localization based on the Fellegi-Holt paradigm.

Deductive correction is intended for systematic errors with a known cause. In practice, deductive correction

methods often make use of IF-THEN rules, where the IF condition describes a particular error pattern in the

observed data and the THEN condition describes how this error should be corrected. An advantage of deductive

correction is that a user has control over the adjustments made to the data in a way that is direct and intuitive.

An important disadvantage in some applications is that a large set of IF-THEN rules may be needed to account

for all possible error patterns, in which case it tends to become difficult to design and maintain such a set of

correction rules (Chen et al., 2003).

5. Error localization is used to find errors without an obvious cause. For this approach, a user specifies

restrictions that should be satisfied by error-free data, known as edit rules. Let 𝐱 = (𝑥1, … , 𝑥𝐽)
′
 denote a vector

of observed variables. In this paper, we will assume that all variables are real-valued and all edit rules can be

written in the following form:

IF (𝐚1
′ 𝐱 ≤ 𝑏1 AND 𝐚2

′ 𝐱 ≤ 𝑏2 ⋯ AND ⋯ 𝐚𝐾−1
′ 𝐱 ≤ 𝑏𝐾−1) THEN (𝐚𝐾

′ 𝐱 ≤ 𝑏𝐾) (1)

for certain known vectors of constants 𝐚1, … , 𝐚𝐾 and constants 𝑏1, … , 𝑏𝐾. Here, the IF condition may be empty

and each ≤ may also be replaced by ≥, <, > or =. A special case of an edit rule of the form (1) is a simple

linear inequality 𝐚′𝐱 ≤ 𝑏 or equality 𝐚′𝐱 = 𝑏. [Note: Error localization methods have also been developed for

other types of data, including a combination of categorical and real-valued variables, but we will not treat this

topic here; see, e.g., De Waal et al. (2011, Chapters 3-5) and Van der Loo and De Jonge (2018, Chapter 7).]

6. According to the paradigm of Fellegi and Holt (1976), the error localization problem should be solved

by finding the smallest possible subset of variables in 𝐱 such that all edit rules can be satisfied by adjusting only

these variables. In practice, a generalization of this paradigm is often used, where each variable 𝑥𝑗 is given a

positive reliability weight 𝑤𝑗 and the goal is to minimize the sum of the reliability weights of the adjusted

variables. Thus, larger reliability weights should be assigned to variables that are less likely to be erroneous.

Mathematically, this error localization problem can be written as a mixed-integer linear programming (MILP)

problem (Van der Loo and De Jonge, 2018):

 min(∑ 𝑤𝑗𝛿𝑗
𝐽
𝑗=1) under the following restrictions:

 �̃� = (�̃�1, … , �̃�𝐽)
′
 satisfies all edit rules of the form (1);

 𝑥𝑗 − 𝑀𝛿𝑗 ≤ �̃�𝑗 ≤ 𝑥𝑗 + 𝑀𝛿𝑗 for all 𝑗 ∈ {1, … , 𝐽};

 𝛅 = (𝛿1, … , 𝛿𝐽)
′

∈ {0,1}𝐽.

(2)

Here, 𝛿𝑗 is a binary variable that indicates whether variable 𝑥𝑗 is to be adjusted (𝛿𝑗 = 1) or not (𝛿𝑗 = 0), and �̃�

denotes the adjusted record. In addition, 𝑀 is a large positive number which should be chosen an order of

magnitude larger than any value that is expected in 𝐱. Note that the restriction in the third line of (2) implies

that �̃�𝑗 = 𝑥𝑗 when 𝛿𝑗 = 0 (i.e., the original value is not adjusted) and −𝑀 ≤ �̃�𝑗 − 𝑥𝑗 ≤ 𝑀 when 𝛿𝑗 = 1 (i.e., in

practical terms any adjustment can be made to the original value). In practice so far – and in the toy example

that will be discussed below – we have used 𝑀 = 107. If the original record 𝐱 contains any missing values,

then these may be imputed ‘for free’ by any value; the corresponding values of �̃� are unrestricted in (2).

7. A solution to error localization problem (2) consists of only the error pattern 𝛅. In general, there may

exist an infinite number of possible adjusted records �̃� that satisfy the restrictions in (2) for a given solution 𝛅.

In practice, the final adjusted record can be created by, first, setting the erroneous values to missing, second,

imputing new values for all variables with missing values and, third, adjusting only these imputed values if

necessary so that all edit rules (1) become satisfied. This last step can be formulated as a linear or quadratic

programming problem. In practice, solving such a problem is much less computationally demanding than

solving the MILP problem (2). See, e.g., De Waal et al. (2011, Chapter 10) for more details.

8. In the above error localization problem, it was assumed that all edit rules (1) are hard edit rules (i.e.,

they must be satisfied by any error-free record). In practice, soft edit rules can also occur which indicate

situations that are implausible but not impossible. Scholtus (2015) proposed an extension of MILP problem (2)

that can accommodate soft edit rules. Another limitation of Fellegi-Holt-based error localization is that it is

based on the assumption that errors occur independently in each variable. However, sometimes errors occur for

which it is natural to correct them by adjusting multiple variables at once. For instance, a respondent could

interchange the values of two variables by mistake. Daalmans and Scholtus (2018) formulated an extension of

error localization problem (2) that can accommodate a more general class of edit operations, including

operations that affect more than one variable. They showed that this extended error localization problem can

also be solved as a MILP problem. Finally, it should be noted that other automatic editing methods have been

developed. For instance, Little and Smith (1987) proposed an editing method based on an explicit statistical

model for the data and Dumpert (2020) and Rocci (2020) discuss some recent proposals to use machine

learning for editing. Many of these other methods implicitly use soft edit rules but do not easily incorporate

hard edit rules. One exception is the Nearest-neighbour Imputation Methodology developed by Statistics

Canada for the household census (Bankier, 2006; De Waal et al., 2011, Section 4.5).

B. Multisource editing: notation and setup

9. Denote the observed variables for unit 𝑖 in data source 𝑝 ∈ {1, … , 𝑃} by 𝐱𝑖
(𝑝)

= (𝑥𝑖1
(𝑝)

, … , 𝑥𝑖𝐽𝑝

(𝑝)
)

′
. Within

each data source, there may be internal edit rules of the form (1) that should be satisfied:

IF (𝐚1
′ 𝐱𝑖

(𝑝)
≤ 𝑏1 AND 𝐚2

′ 𝐱𝑖
(𝑝)

≤ 𝑏2 ⋯ AND ⋯ 𝐚𝐾−1
′ 𝐱𝑖

(𝑝)
≤ 𝑏𝐾−1) THEN (𝐚𝐾

′ 𝐱𝑖
(𝑝)

≤ 𝑏𝐾). (3)

10. A common variable is a variable that occurs in at least two data sources, with definitions that are

aligned so it is reasonable to expect the same unit to report the same value in each source. Suppose that across

all data sources we have identified 𝐿 common variables. Typically, 𝐿 ≪ ∑ 𝐽𝑝
𝑃
𝑝=1 . Let 𝑦𝑖𝑙

(𝑝)
 denote the value of

common variable 𝑙 for unit 𝑖 in data source 𝑝. In practice, each data source will contain only a subset of all

common variables. Let 𝐲𝑖
(𝑝)

 denote a vector containing all 𝑦𝑖𝑙
(𝑝)

 that occur in data source 𝑝. In general, a

common variable may not be observed directly in a source but has to be derived from the observed variables

𝐱𝑖
(𝑝)

. We assume here that all derivations are affine transformations, so it holds that

𝐲i
(𝑝)

= 𝐂(𝑝)𝐱𝑖
(𝑝)

+ 𝐝(𝑝) (4)

for some known matrix 𝐂(𝑝) and vector 𝐝(𝑝) of appropriate dimensions.

11. The actual sources that are available for each common variable differ by unit, because of sampling,

non-response and other data collection issues. Let 𝐵𝑖𝑙 denote the subset of sources {1, … , 𝑃} in which common

variable 𝑙 is (indirectly) observed for unit 𝑖. Since our aim is to avoid large inconsistencies between the values

of common variables in different data sources, we define further restrictions of the following form:

|𝑦𝑖𝑙
(𝑝)

− 𝑦𝑖𝑙
(𝑞)

| ≤ 휀𝑙 |𝑦𝑖𝑙
(𝑞)

| (5)

for all pairs (𝑝, 𝑞) with 𝑝 ∈ 𝐵𝑖𝑙, 𝑞 ∈ 𝐵𝑖𝑙. Here, the parameter 0 ≤ 휀𝑙 < 1 defines the maximal allowed relative

deviation between observed values of common variable 𝑙. So far, we have used 휀𝑙 = 0.1 (i.e., relative

deviations of up to 10%). Choosing 휀𝑙 = 0 would mean no deviations are allowed at all. In practice, this choice

would require us to resolve many very small inconsistencies. It may be more convenient to leave relatively

small inconsistencies unresolved at the level of individual units. Consistent statistical output could then still be

obtained by applying techniques such as macro-integration (Mushkudiani et al., 2014) or calibration (Deville

and Särndal, 1992) to resolve the remaining inconsistencies at a higher level of aggregation.

12. To formulate the automatic multisource editing problem, it is useful to introduce a vector of ‘true’

values of the common variables for unit 𝑖, 𝐳𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝐿)′. Instead of (5), we may then define the restrictions

|𝑦𝑖𝑙
(𝑝)

− 𝑧𝑖𝑙| ≤ 휀𝑙
∗|𝑧𝑖𝑙| (6)

for all 𝑝 ∈ 𝐵𝑖𝑙. With the choice 휀𝑙
∗ = 휀𝑙/(2 + 휀𝑙), it can be shown using the triangle inequality that any set of

values that satisfies all restrictions (6) also satisfies all restrictions (5) (Scholtus et al., 2022). It should be noted

that each restriction (6) can be written as a set of edit rules of the form (1):

IF (𝑧𝑖𝑙 ≥ 0) THEN (𝑦𝑖𝑙
(𝑝)

≥ (1 − 휀𝑙
∗)𝑧𝑖𝑙) ;

IF (𝑧𝑖𝑙 ≥ 0) THEN (𝑦𝑖𝑙
(𝑝)

≤ (1 + 휀𝑙
∗)𝑧𝑖𝑙) ;

IF (𝑧𝑖𝑙 < 0) THEN (𝑦𝑖𝑙
(𝑝)

≥ (1 + 휀𝑙
∗)𝑧𝑖𝑙) ;

IF (𝑧𝑖𝑙 < 0) THEN (𝑦𝑖𝑙
(𝑝)

≤ (1 − 휀𝑙
∗)𝑧𝑖𝑙).

(6*)

In addition, we may define other edit rules of the form (1) for the common variables:

IF (𝐚1
′ 𝒛𝑖 ≤ 𝑏1 AND 𝐚2

′ 𝒛𝑖 ≤ 𝑏2 ⋯ AND ⋯ 𝐚𝐾−1
′ 𝒛𝑖 ≤ 𝑏𝐾−1) THEN (𝐚𝐾

′ 𝒛𝑖 ≤ 𝑏𝐾). (7)

Edit rules of the form (7) may also involve 𝑦𝑖𝑙
(𝑝)

 but not 𝑥𝑖𝑗
(𝑝)

. At the start of the editing process, the values 𝑧𝑖𝑙

are unknown (i.e., missing).

13. In brief, the purpose of automatic multisource editing is to obtain data for unit 𝑖, consisting of

(𝐱𝑖
(1)

, … , 𝐱𝑖
(𝑃)

, 𝐲𝑖
(1)

, … , 𝐲𝑖
(𝑃)

, 𝐳𝑖), that satisfy all edit rules (3), (4), (6*) and (7). Scholtus et al. (2022) discussed

that solving this automatic editing problem in one step becomes increasingly challenging as more data sources

and common variables are added. Instead, they proposed a three-step procedure:

1) Automatic editing of common variables across data sources

In step 1, errors are identified in the common variables (𝐲𝑖
(1)

, … , 𝐲𝑖
(𝑃)

, 𝐳𝑖), using edit rules (6*) and (7).

2) Imputing ‘true’ values and deriving additional edit rules for the common variables

Using the edited data from step 1, the ‘true’ values 𝐳𝑖 are imputed in line with the edit rules (6*) and

(7). These imputed values are substituted in (6*) to obtain a set of edit rules for (𝐲𝑖
(1)

, … , 𝐲𝑖
(𝑃)

).

3) Automatic editing within each individual data source

Step 3 is carried out independently for each data source. Errors are identified in the observed values

(𝐱𝑖
(𝑝)

, 𝐲𝑖
(𝑝)

) in each data source separately, using the edit rules (3) and (4), as well as the relevant edit

rules from (6*). The imputed values of 𝐳𝑖 from step 2 may not be edited during this step.

14. In step 1 and step 3, both deductive correction and error localization [or indeed any other automatic

editing method that can account for edit rules of the form (3), (4), (6*) and (7)] could be applied. Here, we will

illustrate the procedure using a toy example. A detailed description of the three steps, as well as a larger, more

realistic example, can be found in Scholtus et al. (2022).

C. Example

Table 1. Example with two data sources and two common variables.

ID
common variables data source 1 data source 2

 𝑧1 𝑧2 𝑦1
(1)

 𝑦2
(1)

 𝑥1
(1)

 𝑥2
(1)

 𝑥3
(1)

 𝑦1
(2)

 𝑦2
(2)

 𝑥1
(2)

 𝑥2
(2)

 𝑥3
(2)

1 . . 100 0 100 0 0 800 160 800 160 960

2 . . 60 80 60 30 50 65 80 65 80 145

15. Table 1 contains fictional data on two units observed in two data sources. In this example, two common

variables are available in both sources. The two data sources each contain three observed variables: 𝐱𝑖
(1)

=

(𝑥𝑖1
(1)

, 𝑥𝑖2
(1)

, 𝑥𝑖3
(1)

)
′
 and 𝐱𝑖

(2)
= (𝑥𝑖1

(2)
, 𝑥𝑖2

(2)
, 𝑥𝑖3

(2)
)

′
. In the first source, the following internal edit rules (3) apply:

𝑥𝑖1
(1)

≥ 0;

𝑥𝑖3
(1)

≥ 0;

𝑥𝑖2
(1)

≥ 𝑥𝑖3
(1)

.

(8)

Similarly, the following internal edit rules are relevant for the second data source:

𝑥𝑖1
(2)

≥ 0;

𝑥𝑖2
(2)

≥ 0;

𝑥𝑖3
(2)

= 𝑥𝑖1
(2)

+ 𝑥𝑖2
(2)

.

(9)

16. The values of the common variables 𝐲𝑖
(1)

= (𝑦𝑖1
(1)

, 𝑦𝑖2
(1)

) and 𝐲𝑖
(2)

= (𝑦𝑖1
(2)

, 𝑦𝑖2
(2)

) in Table 1 were

derived from the observed variables 𝐱𝑖
(1)

 and 𝐱𝑖
(2)

 by the following rules (4):

𝑦𝑖1
(1)

= 𝑥𝑖1
(1)

;

𝑦𝑖2
(1)

= 𝑥𝑖2
(1)

+ 𝑥𝑖3
(1)

;
(10)

and

𝑦𝑖1
(2)

= 𝑥𝑖1
(2)

;

𝑦𝑖2
(2)

= 𝑥𝑖2
(2)

.
(11)

The ‘true’ values of the common variables, 𝐳𝑖 = (𝑧𝑖1, 𝑧𝑖2)′ should satisfy the following edit rules (7):

𝑧𝑖1 ≥ 0;
𝑧𝑖2 ≥ 0;

IF (𝑧𝑖1 > 0) THEN (𝑧𝑖2 > 0).
(12)

Finally, we include edit rules of the form (6) or (6*) with 휀1
∗ = 휀2

∗ = 0.05 to relate the values of the common

variables to their ‘true’ values. Since the ‘true’ values 𝑧𝑖1 and 𝑧𝑖2 are known to be non-negative by (12), in this

case these edit rules can be reduced to a simpler form: for 𝑝 ∈ {1,2},

0.95𝑧𝑖1 ≤ 𝑦𝑖1
(𝑝)

≤ 1.05𝑧𝑖1;

0.95𝑧𝑖2 ≤ 𝑦𝑖2
(𝑝)

≤ 1.05𝑧𝑖2.
(13)

17. In step 1 of the automatic editing procedure, we consider the values (𝐲𝑖
(1)

, 𝐲𝑖
(2)

, 𝐳𝑖) and their edit rules

(12) and (13). For the first record in Table 1, it is clear that the values 𝑦𝑖1
(1)

= 100 and 𝑦𝑖1
(2)

= 800 are too far

apart given the restrictions in (13), and similarly 𝑦𝑖2
(1)

= 0 and 𝑦𝑖2
(2)

= 160 are too far apart as well. For both

common variables, at least one of the observed values must be considered incorrect. For the second record, all

values are close enough to be considered correct.

18. We assume here that no deductive correction rules are specified for step 1. A Fellegi-Holt-based error

localization problem of the form (2) is set up for each record in Table 1. Suppose that the values of the common

variables in the first source are considered a priori slightly more reliable than those in the second source. We

reflect this by assigning a reliability weight of 2 to the values in 𝐲𝑖
(1)

 and a reliability weight of 1 to the values

in 𝐲𝑖
(2)

. For the first record in Table 1, this yields the following MILP problem:

 min (2𝛿𝑦1
(1)

+ 2𝛿𝑦2
(1)

+ 𝛿𝑦1
(2)

+ 𝛿𝑦2
(2)

) under the following restrictions:

 (�̃�𝑖1
(1)

, �̃�𝑖2
(1)

, �̃�𝑖1
(2)

, �̃�𝑖2
(2)

, �̃�𝑖1, �̃�𝑖2)
′
 satisfies all edit rules (12) and (13);

 100 − 𝑀𝛿𝑦1
(1)

≤ �̃�𝑖1
(1)

≤ 100 + 𝑀𝛿𝑦1
(1)

;

 0 − 𝑀𝛿𝑦2
(1)

≤ �̃�𝑖2
(1)

≤ 0 + 𝑀𝛿𝑦2
(1)

;

 800 − 𝑀𝛿𝑦1
(2)

≤ �̃�𝑖1
(2)

≤ 800 + 𝑀𝛿𝑦1
(2)

;

 160 − 𝑀𝛿𝑦2
(2)

≤ �̃�𝑖2
(2)

≤ 160 + 𝑀𝛿𝑦2
(2)

;

 (𝛿𝑦1
(1)

, 𝛿𝑦2
(1)

, 𝛿𝑦1
(2)

, 𝛿𝑦2
(2)

)
′

∈ {0,1}4.

The optimal solution to this problem is (𝛿𝑦1
(1)

, 𝛿𝑦2
(1)

, 𝛿𝑦1
(2)

, 𝛿𝑦2
(2)

) = (0,1,1,0), with a total weight of 3. Under this

solution, it is decided to change 𝑦𝑖1
(2)

 for the first common variable and 𝑦𝑖2
(1)

 for the second common variable.

For the second record in Table 1, it is found that the original values are already consistent with all edit rules in

(12) and (13) – i.e., it is possible to find values for 𝐳𝑖 that satisfy these edit rules together with 𝐲𝑖
(1)

 and 𝐲𝑖
(2)

 –

so here no values are considered erroneous. Table 2 shows the edited data after step 1.

Table 2. Edited data after step 1.

ID
common variables data source 1 data source 2

 𝑧1 𝑧2 𝑦1
(1)

 𝑦2
(1)

 𝑥1
(1)

 𝑥2
(1)

 𝑥3
(1)

 𝑦1
(2)

 𝑦2
(2)

 𝑥1
(2)

 𝑥2
(2)

 𝑥3
(2)

1 . . 100 . 100 0 0 . 160 800 160 960

2 . . 60 80 60 30 50 65 80 65 80 145

19. In step 2, we begin by imputing the ‘true’ values of 𝑧𝑖1 and 𝑧𝑖2. For this small example, it suffices to

use a simple ad hoc procedure which fills in each 𝑧𝑖𝑙 sequentially by the following rules:

 If any of the observed values 𝑦𝑖𝑙
(𝑝)

 are not missing after step 1 and do not cause violations of edit rules

(12) and (13), then impute such a value. If multiple values are available, then choose the one with the

largest reliability weight from step 1.

 Otherwise, impute the midpoint of the feasible interval for 𝑧𝑖𝑙, given edit rules (12) and (13).

For larger applications, such a sequential procedure does not always work. In general, we propose to use a

sequential procedure to obtain initial imputations for 𝑧𝑖𝑙 and then minimally adjust these imputations if

necessary to satisfy all edit rules (12) and (13). (Recall that Fellegi-Holt-based error localization guarantees that

a set of values always exists for 𝐳𝑖 that satisfies all edit rules.) The resulting data for the example are shown in

Table 3. Note that in the second record, 𝑦𝑖1
(1)

= 60 and 𝑦𝑖1
(2)

= 65 are themselves not feasible values for 𝑧𝑖1.

The actual feasible interval for 𝑧𝑖1 for this record is [60/0.95, 65/1.05] ≈ [61.90, 63.16].

Table 3. Edited data after step 2.

ID
common variables data source 1 data source 2

 𝑧1 𝑧2 𝑦1
(1)

 𝑦2
(1)

 𝑥1
(1)

 𝑥2
(1)

 𝑥3
(1)

 𝑦1
(2)

 𝑦2
(2)

 𝑥1
(2)

 𝑥2
(2)

 𝑥3
(2)

1 100 160 100 . 100 0 0 . 160 800 160 960

2 62.53 80 60 80 60 30 50 65 80 65 80 145

20. In the second part of step 2, we derive new edit rules for 𝐲𝑖
(1)

 and 𝐲𝑖
(2)

 by substituting the imputed

values of 𝑧𝑖1 and 𝑧𝑖2 in (13). For the first record, this yields

95 ≤ 𝑦𝑖1
(𝑝)

≤ 105;

152 ≤ 𝑦𝑖2
(𝑝)

≤ 168;
(14)

and for the second record

59.40 ≤ 𝑦𝑖1
(𝑝)

≤ 65.66;

76 ≤ 𝑦𝑖2
(𝑝)

≤ 84.
(15)

21. In step 3, the data in each source are edited separately. Again, we suppose no deductive correction rules

have been specified. For each record in each data source, an error localization problem of the form (2) is set up.

For simplicity, suppose all reliability weights are chosen equal to 1. As an example, for the first record in data

source 1 in Table 3, we obtain the following MILP problem:

 min (𝛿𝑦1
(1)

+ 𝛿𝑥1
(1)

+ 𝛿𝑥2
(1)

+ 𝛿𝑥3
(1)

) under the following restrictions:

 (�̃�𝑖1
(1)

, �̃�𝑖2
(1)

, �̃�𝑖1
(1)

, �̃�𝑖2
(1)

, �̃�𝑖3
(1)

)
′
 satisfies all edit rules (8), (10) and (14);

 100 − 𝑀𝛿𝑦1
(1)

≤ �̃�𝑖1
(1)

≤ 100 + 𝑀𝛿𝑦1
(1)

;

 100 − 𝑀𝛿𝑥1
(1)

≤ �̃�𝑖1
(1)

≤ 100 + 𝑀𝛿𝑥1
(1)

;

 0 − 𝑀𝛿𝑥2
(1)

≤ �̃�𝑖2
(1)

≤ 0 + 𝑀𝛿𝑥2
(1)

;

 0 − 𝑀𝛿𝑥3
(1)

≤ �̃�𝑖3
(1)

≤ 0 + 𝑀𝛿𝑥3
(1)

;

 (𝛿𝑦1
(1)

, 𝛿𝑥1
(1)

, 𝛿𝑥2
(1)

, 𝛿𝑥3
(1)

)
′

∈ {0,1}4.

The optimal solution to this problem is to change only the value of 𝑥𝑖2
(1)

, with a total weight of 1.

22. Table 4 shows the edited data after error localization for both records in both data sources. Additional

values in 𝐱𝑖
(1)

 and 𝐱𝑖
(2)

 were identified as erroneous. In record 1, this was done to accommodate errors in the

common variables 𝐲𝑖
(1)

 and 𝐲𝑖
(2)

 that were found in step 1, given the relations in (10) and (11). In record 2, this

was done to resolve an inconsistency with respect to the internal edit rules (8) in data source 1. Finally, Table 5

shows a possible way to impute the missing values in Table 4 that is consistent with all restrictions. Note that

because of edit rules (14) and (15), no new inconsistencies between data sources were introduced during step 3,

even though each data source was edited independently.

Table 4. Edited data after error localization in step 3.

ID
common variables data source 1 data source 2

 𝑧1 𝑧2 𝑦1
(1)

 𝑦2
(1)

 𝑥1
(1)

 𝑥2
(1)

 𝑥3
(1)

 𝑦1
(2)

 𝑦2
(2)

 𝑥1
(2)

 𝑥2
(2)

 𝑥3
(2)

1 100 160 100 . 100 . 0 . 160 . 160 .

2 62.53 80 60 80 60 . . 65 80 65 80 145

Table 5. Final edited data after step 3.

ID
common variables data source 1 data source 2

 𝑧1 𝑧2 𝑦1
(1)

 𝑦2
(1)

 𝑥1
(1)

 𝑥2
(1)

 𝑥3
(1)

 𝑦1
(2)

 𝑦2
(2)

 𝑥1
(2)

 𝑥2
(2)

 𝑥3
(2)

1 100 160 100 160 100 160 0 100 160 100 160 260

2 62.53 80 60 80 60 50 30 65 80 65 80 145

D. Implementation and pilot studies

23. A prototype implementation of the three-step procedure for automatic multisource editing has been

developed using a suite of existing R packages: validate and validatetools for managing and evaluating

edit rules, dcmodify for deductive correction, errorlocate for Fellegi-Holt-based error localization,

deductive and simputation for imputation of missing values, and rspa for adjusting imputed values to

edit rules by quadratic minimization (Van der Loo and De Jonge, 2018 and 2021). An initial pilot study was

conducted in 2021 and 2022 with data from 𝑃 = 7 sources, with 𝐿 = 13 common variables and over 100

variables in total. The main finding of this pilot study was that the three-step approach is computationally

feasible but that the quality of edited data is not yet good enough for use in actual production (Scholtus et al.,

2022). To improve the quality of automatic editing, more subject-matter knowledge should be included.

24. The current project includes a new, larger pilot study with 𝑃 = 9 data sources:

 Structural Business Statistics (survey)

 ProdCom (survey)

 Statistics on Finances of Large Enterprise groups (survey)

 Short-Term Statistics (admin data)

 Short-Term Statistics (survey)

 Statistics on Employees and Salaries (admin data)

 Statistics on International Trade of Goods and Services (combination of survey and admin data)

 Profit Declaration Tax Data (admin data)

 Investment Statistics (survey)

In total, 𝐿 = 33 common variables have been identified. Of these, 27 variables occur in exactly two sources,

five variables occur in exactly three sources, and one variable (‘net turnover excluding excises’) occurs in four

sources. All data refer to the year 2022. In addition, production-edited data for the year 2021 are available as

reference data. For step 1 and 2 of the editing procedure, all data sources will be considered. For step 3, we will

initially focus on editing the Structural Business Statistics, where the current production process already

includes extensive automatic editing.

III. Incorporating subject-matter knowledge into automatic editing

25. An important aim of the current project is to develop ways to take more subject-matter knowledge into

account during automatic editing of the pilot study data. Three types of input that affect the outcome of

automatic editing are: (i) deductive correction rules; (ii) edit rules for error localization; (iii) reliability weights

for error localization. In this paper, we will focus on the latter two points.

A. Finding relevant edit rules

26. As explained in Section II, the multisource error localization problem in its current form involves edit

rules of the forms (3), (4), (6*) and (7). Internal edit rules (3) for most data sources are already well-developed

as part of regular statistical production. Exceptions may occur, e.g., for administrative data that are not yet used

directly to create statistical output; in the pilot study this is true for Profit Declaration Tax Data. Edit rules (4)

relating 𝐲𝑖
(𝑝)

 to 𝐱𝑖
(𝑝)

 are given by definition and edit rules (6*) follow immediately from the choice of 휀𝑙
∗. By

contrast, edit rules (7) for the ‘true’ values of the common variables are still mostly lacking. Thus, finding edit

rules for these variables seems to be a good opportunity for improvement.

27. The lack of explicit edit rules for common variables reflects a wider issue: outside of the Large Cases

Unit, statistical analysts currently have little experience with comparing these variables across statistics. While

the experience of the Large Cases Unit is useful and in fact crucial here – it is the main source of the definitions

of common variables used in (4) –, it is also limited to the largest and most complicated enterprise groups,

whereas automatic editing will be focused mainly on small to medium-sized enterprises without a complicated

structure. More knowledge of relations between common variables for these smaller units is therefore needed.

In the future, this knowledge should increase naturally over time as top-down interactive multisource editing

becomes more widespread as part of regular statistical production. For now, we will use a more data-driven

approach to find relations between common variables that can be turned into edit rules. The findings of these

data analyses will also be discussed with subject-matter experts which, hopefully, can lead to even more edit

rules being discovered.

28. As a starting point, we can take historical (internally) edited values 𝑦𝑖𝑙
(𝑝)

 in one particular data source 𝑝

as a proxy for the underlying ‘true’ values 𝑧𝑖𝑙, and use these data to study patterns among a subset of the

common variables. One, relatively simple, approach to find edit rules is to fit a linear regression model to each

pair of variables (𝑦𝑖𝑙1

(𝑝)
, 𝑦𝑖𝑙2

(𝑝)
), with 𝑦𝑖𝑙1

(𝑝)
 acting as independent variable and 𝑦𝑖𝑙2

(𝑝)
 as dependent variable. For

economic data, a regression model with heteroscedastic disturbances (variance proportional to the independent

variable) often fits better than a model with homoscedastic disturbances. Next, we restrict attention to those

pairs of variables where the explained variance of the linear model is large (𝑅2 greater than some threshold)

and subject-matter experts consider the relation to be relevant. For each of these combinations of variables, the

fitted regression model is used to obtain (e.g.) 95% prediction intervals for 𝑦𝑖𝑙2

(𝑝)
 given 𝑦𝑖𝑙1

(𝑝)
. The upper and

lower bounds of these prediction intervals vary as a non-linear function of 𝑦𝑖𝑙1

(𝑝)
 which, however, can typically

be approximated well by a linear function, by fitting two new linear regression models to these upper and lower

bounds. The resulting fitted regression lines provide a natural upper and lower bound on 𝑦𝑖𝑙2

(𝑝)
 given 𝑦𝑖𝑙1

(𝑝)
,

leading to a linear edit rule for 𝑧𝑖𝑙1
 and 𝑧𝑖𝑙2

 of the form:

�̂�(lower) + �̂�(lower)𝑧𝑖𝑙1
≤ 𝑧𝑖𝑙2

≤ �̂�(upper) + �̂�(upper)𝑧𝑖𝑙1
. (16)

29. Figure 1 illustrates this approach. The solid blue line indicates the original fitted linear regression line.

The dashed blue lines indicate the fitted linear regression lines to the upper and lower bounds of the 95%

prediction intervals around the original regression line. Black dots represent data points that lie within their

prediction interval, red dots lie outside their prediction interval. In this example, about 4% of all points were

coloured red, which is slightly less than expected. This may be due in part to our linear approximation to the

non-linear prediction intervals, but also because the prediction intervals were computed for the same data on

which the original regression model was estimated.

Figure 1. An illustration of the prediction-interval approach.

30. It should be noted that (16) is a soft edit rule: it is known that some error-free data points will violate

this restriction. It may be a step too far to use this edit rule directly to find errors in the observed common

variables. However, it may be useful to force any adjustments made during automatic editing to satisfy this

restriction, to avoid creating implausible combinations of values. To this end, the following variations on (16)

could be used instead, for each data source 𝑝 that includes common variable 𝑙1 and/or 𝑙2:

IF (𝑦𝑖𝑙1

(𝑝)
> 𝑎𝑖𝑙1

(𝑝)
) THEN (�̂�(lower) + �̂�(lower)𝑧𝑖𝑙1

≤ 𝑧𝑖𝑙2
≤ �̂�(upper) + �̂�(upper)𝑧𝑖𝑙1

);

IF (𝑦𝑖𝑙1

(𝑝)
< 𝑎𝑖𝑙1

(𝑝)
) THEN (�̂�(lower) + �̂�(lower)𝑧𝑖𝑙1

≤ 𝑧𝑖𝑙2
≤ �̂�(upper) + �̂�(upper)𝑧𝑖𝑙1

);

IF (𝑦𝑖𝑙2

(𝑝)
> 𝑎𝑖𝑙2

(𝑝)
) THEN (�̂�(lower) + �̂�(lower)𝑧𝑖𝑙1

≤ 𝑧𝑖𝑙2
≤ �̂�(upper) + �̂�(upper)𝑧𝑖𝑙1

);

IF (𝑦𝑖𝑙2

(𝑝)
< 𝑎𝑖𝑙2

(𝑝)
) THEN (�̂�(lower) + �̂�(lower)𝑧𝑖𝑙1

≤ 𝑧𝑖𝑙2
≤ �̂�(upper) + �̂�(upper)𝑧𝑖𝑙1

).

(17)

Here, 𝑎𝑖𝑙1

(𝑝)
 and 𝑎𝑖𝑙2

(𝑝)
 denote the observed values of 𝑦𝑖𝑙1

(𝑝)
 and 𝑦𝑖𝑙2

(𝑝)
 in the original data, so initially it holds that

𝑦𝑖𝑙1

(𝑝)
= 𝑎𝑖𝑙1

(𝑝)
 and 𝑦𝑖𝑙2

(𝑝)
= 𝑎𝑖𝑙2

(𝑝)
. The restrictions in (17) imply that if any changes are made to 𝑦𝑖𝑙1

(𝑝)
 or 𝑦𝑖𝑙2

(𝑝)
 during

automatic editing, then the values of 𝑧𝑖𝑙1
 and 𝑧𝑖𝑙2

 after editing have to conform to the bounds from the

prediction-interval approach. If no changes are made to any 𝑦𝑖𝑙1

(𝑝)
 or 𝑦𝑖𝑙2

(𝑝)
, then these bounds do not apply.

31. It is necessary to check whether the assumption that two variables have a linear relation is reasonable,

for instance by visual inspection. For combinations of common variables for which a non-linear relation is

more suitable, other, more advanced modelling approaches could be applied in a similar way. For instance,

decision tree models naturally lead to restrictions of the form (7). It may also be useful to fit separate models

for subpopulations based on NACE code and/or size class. In general, machine learning techniques could be

useful for finding interesting new edit rules (Dumpert, 2020).

B. Choosing reliability weights

32. For reliability weights, we face a similar issue as for edit rules: much already tends to be known about

the relative reliability of observed variables 𝑥𝑖𝑗
(𝑝)

 within a single data source 𝑝, but less is known about the

relative reliability of the common variables 𝑦𝑖𝑙
(𝑝)

 and 𝑦𝑖𝑙
(𝑞)

 as observed in different data sources. So far, subject-

matter experts have provided an initial set of reliability weights 𝑤𝑙
(𝑝)

 for the common variables. Most of these

weights are within the range [1, 10], with the exception of two variables from the Statistics on Employees and

Salaries which are considered very reliable and were given a weight of 100. However, these weights are

considered to be a highly simplified summary of the quality of each common variable. In reality, the reliability

of these variables is expected to vary across different subpopulations of units. A single set of weights cannot

account for this. However, concrete information about this variation in reliability is lacking. Again, we focus on

data-driven ways to construct better reliability weights.

33. Liepins (1980) showed that a solution to the Fellegi-Holt-based error localization problem (2) can be

seen as an approximate maximum likelihood estimator of the true error pattern under a particular model for

random measurement errors, provided that the reliability weights for unit 𝑖 are chosen as 𝑤𝑖𝑗 = − log (
𝑝𝑖𝑗

1−𝑝𝑖𝑗
),

where 𝑝𝑖𝑗 denotes the probability that an error has occurred in 𝑥𝑖𝑗. Thus, one way to obtain more informative

reliability weights would be to take a data set in which the errors are known and model the error probabilities

𝑝𝑖𝑗 as a function of background variables. In the absence of such a data set, an alternative approach could be to

assume a distribution for the true values of each variable and estimate the probability that a particular observed

value does not come from this distribution.

34. If modelling the error probabilities is not feasible, other approaches could also be used to construct

reliability weights for 𝑦𝑖𝑙
(𝑝)

. Here, a distinction is made between approaches that construct static reliability

weights per stratum and approaches that construct dynamic reliability weights that can vary per unit.

35. An indirect way to construct static reliability weights could work by first modelling the occurrence of

(large) differences between values 𝑦𝑖𝑙
(𝑝)

 and 𝑦𝑖𝑙
(𝑞)

 of the same common variable in different sources, as a

function of known background variables such as NACE code, size class, structural complexity of a unit, foreign

ownership, etc. For instance, logistic regression, decision trees or more advanced machine learning techniques

could be used to identify subpopulations of units for which it is likely that 𝑦𝑖𝑙
(𝑝)

≫ 𝑦𝑖𝑙
(𝑞)

 and other

subpopulations where it is likely that 𝑦𝑖𝑙
(𝑝)

≪ 𝑦𝑖𝑙
(𝑞)

. The results of this analysis are then discussed with subject-

matter experts to (hopefully) decide which of the observed values is more likely to be correct in these scenarios.

These scenarios are then used to define criteria for adjusting the reliability weights per subpopulation. (In

addition, these discussions with subject-matter experts could also yield new deductive correction rules or edit

operations for the extended error localization problem.)

36. A data-driven way to construct dynamic reliability weights for 𝑦𝑖𝑙
(𝑝)

 could work as follows:

1) Split the data set containing (𝐲𝑖
(1)

, … , 𝐲𝑖
(𝑃)

) into records that satisfy all edit rules (6*) and (7) and

records that violate at least one edit. The first set – which does not require editing during step 1 – is

used as reference data for the second set.

2) For each unit 𝑖 that requires editing, find its nearest neighbour 𝑚 in the reference data set according to

the distance function 𝑑(𝑖, 𝑚) = ∑ ∑ |�̆�𝑖𝑙
(𝑝)

− �̆�𝑚𝑙
(𝑝)

|𝑙𝑝 , where �̆�𝑖𝑙
(𝑝)

 and �̆�𝑚𝑙
(𝑝)

 are standardized versions of

𝑦𝑖𝑙
(𝑝)

 and 𝑦𝑖𝑙
(𝑝)

 so all variables are a priori equally important for the distance function. (Here, a robust

form of standardization could be applied by subtracting the median of each variable and dividing by the

interquartile range.) In addition, we may try to find the nearest neighbour within the same stratum as 𝑖
by NACE code and/or size class, provided sufficient reference units are available.

3) Let 𝑟𝑖𝑙
(𝑝)

= |�̆�𝑖𝑙
(𝑝)

− �̆�𝑚𝑙
(𝑝)

| /𝑑(𝑖, 𝑚) so that ∑ ∑ 𝑟𝑖𝑙
(𝑝)

𝑙𝑝 = 1. Define the reliability weights as a

monotonically decreasing function of 𝑟𝑖𝑙
(𝑝)

. That is to say, a variable is considered less reliable if it

contributes more to the total distance of record 𝑖 to its nearest neighbour.

A similar approach to construct dynamic reliability weights was tested previously in a single-source editing

context for Structural Business Statistics, where it worked reasonably well (Scholtus, 2010).

37. For both approaches, a relevant question is how much the initial reliability weights 𝑤𝑙
(𝑝)

 should be

adjusted based on stratum- or unit-specific information. For a different version of the error localization

problem, Freund and Hartley (1967) noted that the absolute values of the weights are not that important; the

relative values are more relevant. These authors used weight reduction factors (1/5, 1/10, etc.) to adjust initial

weights. For static weights as proposed above, one approach could be to reduce (or increase) a reliability

weight by a certain fixed factor for each criterion that is satisfied. Another approach could be to define a limited

set of possible values for reliability weights and shift a weight to a value with a lower (or higher) rank for each

criterion that is satisfied. Similarly, dynamic reliability weights could also be restricted to a limited set of

possible values.

IV. Evaluating the quality of automatic multisource editing

38. A natural way to evaluate the quality of automatic editing is by comparing automatic editing to manual

editing, under the assumption that the manually edited data are the ‘gold standard’. However, in our case it is

difficult to evaluate the quality of automatic multisource editing based on historical manually edited data alone,

for at least two reasons. First, manual editing during regular production is reserved for the largest and most

complicated cases, so the manually edited data are not a representative sample of the whole population. Second,

due to the isolated nature of current production processes (as discussed in Section I), manual editing on

historical data was often done without taking consistency across different statistics explicitly into account.

Therefore, these data may not be considered as a ‘gold standard’ for our purposes.

39. To obtain a better data set for evaluation, we have drawn a probability sample of 350 units from the

pilot study data, to be edited manually outside of regular production with the multisource aspect taken into

account. For the units in the sample, statistical analysts have been asked to explain all inconsistencies between

common variables in the raw data that are larger than 10% and to correct any erroneous values that they find.

An R Shiny dashboard was developed for this exercise, where analysts can edit the data and provide comments

on their findings. The sample of 350 units was drawn as a stratified sample of 50 units each from seven

different economic sectors. Units without any inconsistencies larger than 10% on common variables or with at

least one inconsistency larger than 200% were not eligible for selection: the former do not require multisource

editing, the latter may not be suitable for automatic editing. For the same reason, large units with 200

employees or more and units that are part of a larger enterprise group were also excluded.

40. It remains to be seen for how many sampled units ‘gold standard’ data can be obtained through this

manual editing exercise. For economic sectors where a sufficiently large subsample of ‘gold standard’ data is

available, the quality of automatic error localization can be evaluated by comparing the error patterns found by

automatic editing to the error patterns found by manual editing. Evaluation measures based on the number of

false positives (incorrect errors) and false negatives (missed errors) can be computed, such as recall, precision,

and accuracy. Another interesting measure is the percentage of records for which exactly the right error pattern

was found (Daalmans and Scholtus, 2018). The distributions of values after automatic and manual editing can

also be compared by measures such as the average absolute distance and the absolute or relative difference in

means; these measures reflect the combined quality of error localization and imputation. EDIMBUS (2007,

Appendix D) provides a large set of evaluation measures for (automatic) editing; see also De Waal et al. (2011,

Chapter 11).

41. In addition to these direct evaluations, a more indirect way to evaluate the effects of automatic editing

is to compare aggregated statistics such as stratum totals before and after editing. Any large changes in these

statistics due to automatic editing are acceptable only if these are considered plausible by subject-matter

experts. With this in mind, the subpopulations found by the analysis discussed in paragraph 35 are also relevant

here, because we can check whether automatic editing has indeed adjusted the data for these subpopulations

according to the expectations of the subject-matter experts. Visualizations of the data before and after editing

can also be useful, to highlight unexpected patterns in the adjustments made by automatic editing.

V. References

M. Bankier (2006), Imputing Numeric and Qualitative Variables Simultaneously. Memo, Statistics Canada,

Social Survey Methods Division.

B. Chen, Y. Thibaudeau and W.E. Winkler (2003), A Comparison Study of ACS IF-Then-Else, NIM,

DISCRETE Edit and Imputation Systems using ACS Data. UNECE Work Session on Statistical Data

Editing, Madrid.

J. Daalmans and S. Scholtus (2018), A MIP Approach for a Generalised Data Editing Problem. Discussion

Paper, Statistics Netherlands, The Hague, available here.

https://www.cbs.nl/en-gb/background/2018/29/a-mip-approach-for-a-generalised-data-editing-problem

J.-C. Deville and C.-E. Särndal (1992), Calibration Estimators in Survey Sampling. Journal of the American

Statistical Association 87, 376–382.

T. de Waal, J. Pannekoek and S. Scholtus (2011), Handbook of Statistical Data Editing and Imputation. John

Wiley & Sons, Hoboken, NJ.

F. Dumpert (2020), Theme Report of the Editing & Imputation Group. Report, UNECE HLG-MOS Machine

Learning Project.

EDIMBUS (2007), Recommended Practices for Editing and Imputation in Cross-Sectional Business Surveys.

Eurostat manual prepared by ISTAT, Statistics Netherlands, and SFSO.

I.P. Fellegi and D. Holt (1976), A Systematic Approach to Automatic Edit and Imputation. Journal of the

American Statistical Association 71, 17–35.

R.J. Freund and H.O. Hartley (1967), A Procedure for Automatic Data Editing. Journal of the American

Statistical Association 62, 341–352.

G.E. Liepins (1980), A Rigorous, Systematic Approach to Automatic Data Editing and its Statistical Basis.

Report ORNL/TM-7126, Oak Ridge National Laboratory.

R.J.A. Little and P.J. Smith (1987), Editing and Imputation of Quantitative Survey Data. Journal of the

American Statistical Association 82, 58–68.

N. Mushkudiani, J. Daalmans and J. Pannekoek (2014), Macro-Integration for Solving Large Data

Reconciliation Problems. Austrian Journal of Statistics 43, 29–48.

F. Rocci (2020), Machine Learning for Data Editing Cleaning in NSI (Editing & Imputation): Some Ideas and

Hints. Report, UNECE HLG-MOS Machine Learning Project.

S. Scholtus (2010), Betrouwbaarheidsgewichten voor het automatisch gaafmaken bij de Productiestatistieken.

Internal report (in Dutch), Statistics Netherlands, The Hague.

S. Scholtus (2015), New Results on Automatic Editing using Hard and Soft Edit Rules. UNECE Work Session

on Statistical Data Editing, Budapest.

S. Scholtus, W. de Jong, A. Vaasen-Otten and F. Aelen (2022), Towards a New Integrated Uniform Production

System for Business Statistics at Statistics Netherlands: Automatic Data Editing with Multiple Data

Sources. UNECE Expert Meeting on Statistical Data Editing, 3-7 October 2022 (virtual).

A. Vaasen-Otten, F. Aelen, S. Scholtus and W. de Jong (2022), Towards a New Integrated Uniform Production

System for Business Statistics at Statistics Netherlands: Quality Indicators to Guide Top-down

Analysis. UNECE Expert Meeting on Statistical Data Editing, 3-7 October 2022 (virtual).

M. van der Loo and E. de Jonge (2018), Statistical Data Cleaning with Applications in R. John Wiley & Sons,

Hoboken, NJ.

M. van der Loo and E. de Jonge (2021), Data Validation Infrastructure for R. Journal of Statistical Software 97

(10), 1–31.

