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I. INTRODUCTION

1. The accurate detection of extreme numerical outliers in trade data is crucial
for effective policy making, anti-fraud measures, and reliable EU-wide statistics. The
European Commission could significantly benefit from the Surveillance database of DG
TAXUD, which collects import/export transactions from national authorities. However,
large errors in declared values may occur due to data quality issues, and this can severely
impact data analyses and lead to incorrect decisions[Perrotta et al., 2020].

2. The significant skewness observed in the distributions of international trade data
poses a major challenge in identifying these extreme numerical outliers, as it can be
difficult to distinguish them from the normal values in the right tail of the distribu-
tion. Building upon the work described in the scientific article "An adjusted boxplot for
skewed distributions" [Hubert and Vandervieren, 2008], our proposed method addresses
the challenges posed by the highly skewed distributions found in international trade data.
In particular, the primary contributions of our proposal are:

(i) Enlarging the spectrum of distributions considered in the article to more closely re-
semble the asymmetric distributions that characterize international trade data. This
allows for a more accurate representation of trade data distributions, which are often
more skewed than those found in the existing literature.

(ii) Developing a method for calculating thresholds that identify extreme anomalous
numbers of each distribution, rather than adapting a box plot for skewed distributions.
This novel approach is specifically designed for detecting extreme numerical outliers in
highly asymmetric distributions.
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3. To assess its quality, we will test it on real international trade data provided by
DG TAXUD. This practical deployment will enable us to evaluate the effectiveness of
our approach in detecting extreme numerical outliers in trade data and contribute to the
improvement of data quality checks at DG TAXUD. It will also assess the potential to
significantly enhance the reliability of EU-wide statistics, anti-fraud measures, and policy
making, as well as facilitate economic operators in their activities.

4. This paper is organized as follows. Section II describes the motivation and the
statistical challenges related to the problem under study. Section III presents the sta-
tistical approach. Section IV discusses the empirical results obtained with Surveillance
data. Finally, Section V concludes.

II. MOTIVATION AND STATISTICAL CHALLENGES

1. The European Union (EU) has created a robust legal structure designed to fa-
cilitate efficient customs operations among its member states through the Union Cus-
toms Code (UCC) - Regulation (EU) No 952/2013, along with its implementing (EU
2015/2447) and delegated (EU 2015/2446) regulations. This framework is crucial for
streamlining customs procedures, preventing fraud, securing the EU external borders,
and facilitating legitimate trade. The information, collected on a daily basis from the
national authorities, form the Surveillance database of the Directorate-General for Tax-
ation and Customs Union (DG TAXUD). Each entry of this database corresponds to an
import or export transaction, and contains information recorded by the trade operators
in a customs declaration, including the net and gross mass of the product traded, the
corresponding economic value, the origin and the destination of the consignment. The
TARif Intégré Communautaire (TARIC, Integrated Tariff of the European Communities)
database, which represents the EU’s comprehensive customs tariff, categorizes products
using a hierarchical coding system. The Surveillance and TARIC systems facilitate the
monitoring of EU trade for different purposes: policy-making, compiling EU-wide statis-
tics, ensuring the integrity of supply chains, combating frauds, and supporting economic
operators with tasks such as identifying licensing needs or calculating duties. In 2022,
for example, these systems were instrumental in monitoring trade related to the EU’s
response to the Russian invasion of Ukraine, aiming to swiftly identify transactions in-
volving sanctioned goods destined for Russia or Belarus to enable robust export controls
by EU Customs.

2. As expected considering the quantity of single EU imports and exports that
occurs everyday, the amount of import and export records stored in Surveillance is con-
siderably huge. In 2023 alone, 990,937,480 entries were recorded. This massive volume
of data, combined with the fact that their transmission typically occurs shortly after the
actual completion of import/export transactions, makes the presence in Surveillance data
of excessively outlying values a significant concern. Such outliers, typically unintended,
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can greatly distort the figures declared at customs — most notably affecting the mass,
statistical value, or number of supplementary units — and can consequently impact data
analyses, lead to incorrect conclusions, and result in poor decision-making. It is there-
fore imperative for DG TAXUD to implement dependable data quality checks before the
Surveillance data is used.

3. At first sight, one might consider classical robust statistical methods for detect-
ing extreme outliers in data1. For example, without making distributional assumptions
that could be violated by Surveillance data, we might analyze all records for a spe-
cific product, focusing on a particular numerical variable (e.g. net mass), and establish a
threshold based on a significant deviation from the median, expressed in terms of Median
Absolute Deviations (MAD) or the Interquartile Range (IQR)2. Alternatively, one might
use the standard boxplot method (see Figure 1). However, as Figure 2 demonstrates,
these methods may not yield reliable results when applied to highly skewed distributions,
which are common for many products in Surveillance database. Even though the practi-
cal case in the figure does not contain any extreme value, both approaches flag numerous
potential outliers, even with the most conservative threshold Median+5×1.4826×MAD.

4. It is evident that using the two classical robust statistical methods on Surveillance
data implies a significant risk of over-declaring the relevant anomalies. This motivates our
study for an alternative approach that, besides guaranteeing statistically solid outcomes,
should ideally take into account the following requirements:
a) Flexibility: the proposed method should be suitable for all the products in the data-

base.
b) Statistical properties: the statistical approach should be easy to apply and to explain,

allowing for a strict control of the false alarms. This can go at the expense of the
ability to detect all anomalies, but we aim at providing to the Customs offices only
a manageable set of irrefutable errors.

c) Computational efficiency: the procedure detects new outliers every day on datasets
that could be quite large, and needs to be fast.

d) Software simplicity: the approach should be based on algorithms that run in an
Oracle database with limited calls to specialised statistical functions.

III. DESCRIPTION OF THE STATISTICAL APPROACH

1. The boxplot, originally proposed by Tukey et al. [1977], is one of the most fre-
quently used graphical techniques for visualizing the distribution of continuous unimodal
data. For a univariate dataset X ≡ {x1, x2, . . . , xn}, it combines information about the

1Robust statistical methods aim to provide reliable and accurate results even when the data contain
outliers.

2For a univariate dataset X ≡ {x1, x2, . . . , xn}, the MAD is defined as Median(|xi − Median(X)|),
whereas the IQR as the difference between the third quartile Q3 (i.e. the 75th percentile) and the first
quartile Q1 (i.e. the 25th percentile).
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Figure 1. Graphical representation of a boxplot.

Figure 2. Application of classical robust methods on a Surveillance
dataset

location, spread, skewness and tails of the data in a very intuitive and easily understand-
able manner (see figure 1). It also allows for flagging as potential outliers those points
which are outside the fence boundaries defined as:

[Q1 − 1.5 IQR; Q3 + 1.5 IQR]

Observations outside these thresholds are not necessarily outliers [Hoaglin et al., 2000]. If
the data are normally distributed, approximately 0.7% of the observations are expected
to lie outside the fence (about 0.35% in each tail of the distribution). For distributions
with thicker or thinner tails than the normal distribution, this percentage is expected
to be larger or smaller, respectively. Similarly, for skewed distributions, we expect a
different number of potential outliers on each side of the distribution, depending on the
direction and degree of the skewness. For example, applying the boxplot method to the
dataset represented in Figure 1 results in 0% of potential outliers in the left tail and
12.59% in the right tail.
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2. Therefore, while the traditional boxplot is an invaluable tool for data analysis,
it has limitations when applied to distributions that are highly skewed, such as those
commonly encountered in international trade data. The symmetric nature of the fences
does not account for the intrinsic asymmetry of the data, leading to a significant risk of
over-declaring the relevant anomalies. Recognizing this issue, Hubert and Vandervieren
[2008] proposed an adjustment of the traditional boxplot where the fences are based on
a measure of skewness, allowing for asymmetric whisker lengths that better reflect the
underlying distribution of the data. In particular, they defined the fences as:

[Q1 − hL(MC) IQR; Q3 + hU (MC) IQR]

with hL(·) and = hU (·) are two different functions of the skewness, measured by the
medcouple introduced in Brys et al. [2004]:

MC = median
xi≤Q2≤xj

(xj −Q2)− (Q2 − xi)

xj − xi
.

It follows from this definition that −1 ≤ MC ≤ 1, and that MC = 0 when the distribution
is symmetric. Hubert and Vandervieren [2008] considered several specifications for hL(·)
and hU (·), all with the constraint hL(0) = hU (0) = 1.5 in order to obtain the standard
fence expression in case of symmetric distributions. The specification with the most
desirable properties resulted to be the exponential one:

hL(MC) = 1.5ea MC hU (MC) = 1.5eb MC

with a = −3.79 and b = 3.87. These two values were obtained by estimating the following
linear regression without intercept:

ln

(
2

3

Q1 −Q0.35%

IQR

)
≈ a MC

ln

(
2

3

Q99.65% −Q3

IQR

)
≈ b MC

(1)

using the values of Q1, Q3, Q0.35%, Q99.65% and MC calculated on samples of 10,000 ob-
servations extracted from 12,605 distributions coming from the family of Γ, χ2, F, Pareto
and Gg. The parameter space for each family was chosen such that 0 ≤ MC ≤ 0.6.
Finally, the choice 0.35% and 99.65% quantiles aims at replicating the expected 0.7% of
marked outliers in the standard boxplot at the normal distribution.

3. The main limitation in applying this approach to datasets extracted from Surveil-
lance is that it was built based on distributions with a moderate degree of asymmetry
(MC≤ 0.6). However, empirical datasets are characterized by much higher MC values.
Figure 3 shows the values of the medcouples calculated for the 7,447 products codes that
will be object of our empirical exercise described in Section IV. For almost 80% of them,
the value of the medcouple is larger than 0.6. Extending the model to cases of such pro-
nounced asymmetry is not straightforward, as confirmed by Hubert and Vandervieren
[2008]: “It appeared that constructing one good and easy model that also includes the cases
with MC > 0.6 is hard, hence we only concentrated on the more common distributions
with moderate skewness”. On the other hand, the goal of our study is less ambitious.
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Indeed, our aim is not to extend the classic boxplot to the case of highly asymmetric dis-
tributions, but simply to identify for each empirical dataset a threshold value capable of
isolating the extreme outliers of the distribution. Furthermore, given the context of our
application, we might limit ourselves to consider only the right tail of the distribution,
disregarding what happens in the left tail.

4. Considering these factors, we opted for an approach that builds upon the method-
ology proposed by Hubert and Vandervieren [2008], tailored to meet the specific require-
ments of our study. First of all, since our primary interest lies in detecting potential
extreme outliers within the right tail of the distribution, we can focus exclusively on the
corresponding regression, and disregard the regression associated with the left tail. Sec-
ondly, since our objective is not to replicate the main features of the standard boxplot,
we adopt a more flexible specification of the regression model, that is:

ln(ximax −Qi
3) ≈ α+ β · ln(Qi

1) + γ · ln(Qi
2) + θ · ln(Qi

3) + ϕ · ln(Qi
95%) + λ · MCi (2)

where i = 1, . . . , 7, 447. Therefore, the dependent variable and the regressors are not
derived from simulated theoretical distributions, but from the empirical observations of
Surveillance products. Consequently, the coefficients α, β, γ, θ, ϕ, λ are estimated using
the maximum values, percentiles, and medcouples computed from Surveillance datasets.
This is why a robust regression technique is preferable for the estimation of (2). The
values of the dependent variables may indeed be influenced by the potential presence
of the extreme outliers, introducing bias in the estimates. A robust regression method
might mitigate this issue [Huber and Ronchetti, 2011, Rousseeuw and Leroy, 2005]. It is
important to underline that model (2) embeds the implicit assumption that the values of
Q95% do not contain outliers. This corresponds to assume that the percentage of outliers
in each Surveillance product cannot be larger than 5%.

IV. EMPIRICAL RESULTS

1. For the empirical exercise, we focus only on the values of the net mass. Sub-
sequent phases of the study could include additional quantitative variables from the
Surveillance database. We considered all Surveillance entries recorded from 01/11/2022
to 29/05/2024. The total number of records for import and export declarations during
this period is 1,556,162,485 across 9,816 different products. Not all products were in-
cluded in the analysis; those with fewer than 100 distinct net mass values were excluded,
as were those with a negative medcouple value, since extreme outliers are not expected in
products with negative skewness. These filters significantly reduced the number of ana-
lyzed products to 7,447 (a reduction of approximately 24%). However, the total number
of entries in the filtered products was 1,528,757,402, which represents over 98% of the to-
tal. All empirical results presented in this section were obtained using MATLAB routines.
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Figure 3. Histogram of the medcouple (MC) values calculated on se-
lected products in Surveillance database. The characteristics of the selec-
tion are described in Section IV.

2. The objectives of the empirical exercise were as follows: (i) Robust estimation of
the coefficients for regression (2) using the statistics calculates on Surveillance datasets;
(ii) Use the regression estimates to establish a reliable threshold for each product to flag
potential extreme outliers; (iii) Evaluation of the quality of detected extreme outliers
through the analysis of practical examples.

A. Robust estimates

1. The standard estimation of (2) through Ordinary Least Squares (OLS) might
yield biased results due to the potential presence of outliers in the 7,447 values of the
dependent variable ln(xmax − Q3). To mitigate this issue, we employed the following
robust regression methods:

• the Iteratively Reweighted Least Squares (IRWLS) [Holland and Welsch, 1977]
with the leverage adjustment of residuals suggested by Dumouchel et al. [1989],
calculated with the MATLAB function robustfit.

• the MM estimator [Maronna et al., 2019] calculated with the MATLAB function
MMreg included in the FSDA toolbox [Riani et al., 2012].

• the Forward Search (FS) estimator [Riani et al., 2015] calculated with the MAT-
LAB function FSR also included in the FSDA toolbox.

Table 1 presents the estimated coefficients, with OLS estimates included for comparison.
For both IRWLS and MM, among the multiple options available, the default bisquare
weight and ρ functions were used, given that variations did not significantly impact the
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estimates.

2. The consistency in the signs of the estimated coefficients across different estima-
tion methods is notable, with all approaches yielding a positive intercept and positive
effects on the dependent variable for all regressors except ln(Q3). When comparing OLS
estimates with robust methods, the latter suggest stronger effects for ln(Q2), ln(Q3),
ln(Q95%), and a weaker effect for the constant term, ln(Q1), and MC. As anticipated,
the robust estimates of the regression standard error σ are remarkably lower than those
obtained with OLS. The IRWLS and MM estimates are particularly similar, likely due to
their methodological similarities and use of the same kernel function with settings that
ensure an asymptotic efficiency of 95% for both. Finally, Figure 4 exhibits the distri-
bution of standardized residuals for all four estimation methods. The plots confirm the
presence of a subset of right-tail observations that likely represent the extreme anomalies
our study aims to identify.

Table 1. Estimates of regression (2) using standard OLS and different
robust approaches

OLS IRWLS MM FS
α̂ 4.291 4.191 4.192 4.007
β̂ 0.138 0.102 0.102 0.104
γ̂ 0.064 0.088 0.087 0.146
θ̂ -0.332 -0.392 -0.392 -0.468
ϕ̂ 0.959 1.011 1.011 1.028
λ̂ 0.771 0.519 0.517 0.767

σ̂ 1.610 1.167 1.083 0.881

B. The identification of a threshold for flagging extreme outliers

1. With the estimates obtained from model (2) and its standard error, a natural
definition of the thresholds for the maximum values of each product can be:

ln(ximax −Qi
3) < α̂+ β̂ · ln(Qi

1) + γ̂ · ln(Qi
2) + θ̂ · ln(Qi

3) + ϕ̂ · ln(Qi
95%) + λ̂ · MCi + kσ̂

⇓

ximax < Qi
3 + eα̂+β̂·ln(Qi

1)+γ̂·ln(Qi
2)+θ̂·ln(Qi

3)+ϕ̂·ln(Qi
95%

)+λ̂·MCi+kσ̂

Observations above this threshold for product i may be flagged as extreme outliers. The
multiplier k determines the conservatism of the threshold: higher (smaller) values result
in fewer (more) flagged outliers. Figure 5 shows the patterns of the total number of
extreme values identified on the 7,447 products through the four models for increasing
values of k. The starting value is k = t97.5%,7441 = 1.96 (which corresponds to the mul-
tiplier one would use for building a 5% confidence interval for the dependent variable),
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Figure 4. Standardized regression residuals

whereas the maximum is k = 5. As expected, the number of flagged observations de-
creases with increasing k. Comparing the patterns of the four methods, it is clear that for
a fixed value of k the larger σ̂, the smaller the number of spotted observations. The two
extremes are the FS, that starts with 5,475 declared outliers (accounting for 0.00036%
of the total number of records) and ends with 336 (0.00002%), and the OLS, that starts
with 667 (0.00004%) and ends with 143 (0.00001%). The intermediate outcomes offered
by the other two methods seem to be a balanced compromise.

2. Without a deterministic rule for the optimal k value, an alternative approach is
to calculate for each observation xij exceeding Qi

3 the following value:

κij =
ln(xij −Qi

3)− α̂− β̂ · ln(Qi
1)− γ̂ · ln(Qi

2)− θ̂ · ln(Qi
3)− ϕ̂ · ln(Qi

95%)− λ̂ · MCi

σ̂
.

In practice, κij represents the minimum k required to avoid flagging xij as an outlier. In
other words, if κij = 4, then xij is not an outlier for k ≤ 4, whereas it is flagged when
k > 4.
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Figure 6 illustrates the pattern of ordered κij values, limited to cases where κij > 1.96. The
four lines share similar characteristics, with a point of inflection where the slope of the
line increases, suggesting a potential empirical threshold. This point corresponds to κij
values of approximately 2.75, 4, 4.25, and 5.5 for OLS, IRWLS, MM, and FS, respectively.
With these thresholds, the number of extreme values flagged by the four methods is
approximately 250. Small differences were registered only for 15 products. This means
that 99.8% of the times, the four methods provide the same outcome. Moreover, more
than 98% of time the common result is “no extreme observations to flag”.

Figure 5. Number of flagged outliers for increasing values of k.

Figure 6. Patterns of the ordered values of κij .
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C. Some practical examples

Figure 7 presents the results of the proposed outlier identification strategy applied to
three Surveillance products. In all cases, the four methods agreed on the outcomes.
The comparison of the scales of the upper and lower panels highlights the magnitude
differences between flagged and non-flagged observations. This discrepancy significantly
affects the representation of non-flagged observations, which appear compressed and
overlapping near zero in the upper panels, while in the lower panels, they are well-spaced
and distinguishable.

Figure 7. Examples of extreme values detection on Surveillance prod-
uct.

V. CONCLUSIONS

1. This study set out to address the challenge of detecting extreme numerical out-
liers in the highly skewed distributions typically found in international trade data. By
expanding upon the adjusted boxplot methodology for mildly skewed distributions devel-
oped by Hubert and Vandervieren [2008], we have proposed a robust statistical approach
suitable for the highly skewed distribution observed in real-world trade data. Through
robust regression analysis, we have successfully estimated a model that provides tai-
lored thresholds for flagging extreme numerical outliers in each product. The empirical
application of our approach has demonstrated its effectiveness in accurately identify-
ing extreme outliers. Our method also meets the specific needs in terms of flexibility,
statistical robustness, computational efficiency, and software simplicity.

2. By ensuring a more reliable outlier detection mechanism, this study contributes
significantly to the integrity of international trade data analysis. The implications are
wide-ranging, as better data quality checks can potentially enhance the reliability of
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EU-wide statistics, the effectiveness of anti-fraud measures, and the accuracy of policy-
making decisions. Moreover, economic operators may benefit from improved data quality
by obtaining clearer insights into their trade activities.

3. In conclusion, the methods developed in this study serve as a robust and adapt-
able tool for addressing one of the key challenges in statistical analysis of international
trade data. Their integration with current approaches is ongoing [Perrotta et al., 2023,
available upon request]. Future work could extend this approach to additional quantita-
tive variables within the Surveillance database, in order to further refine the process of
outlier detection and increase the robustness of trade data analyses.
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