Stress test framework for evaluating the resilience of transport systems
Stress test framework for evaluating the resilience of transport systems
UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE

The United Nations Economic Commission for Europe (UNECE) is one of the 5 United Nations regional commissions, administered by the Economic and Social Council (ECOSOC). It was established in 1947 with the mandate to help rebuild post-war Europe, develop economic activity and strengthen economic relations among European countries, and between Europe and the rest of the world. During the Cold War, UNECE served as a unique forum for economic dialogue and cooperation between East and West. Despite the complexity of this period, significant achievements were made, with consensus reached on numerous harmonization and standardization agreements.

In the post-Cold War era, UNECE acquired not only many new member States, but also new functions. Since the early 1990s the organization has focused on assisting the countries of Central and Eastern Europe, Caucasus and Central Asia with their transition process and their integration into the global economy.

Today, UNECE supports its 56 member States in Europe, Caucasus, Central Asia and North America in the implementation of the 2030 Agenda for Sustainable Development and its Sustainable Development Goals (SDGs). UNECE provides a multilateral platform for policy dialogue, the development of international legal instruments, norms and standards, the exchange of best practices and economic and technical expertise, as well as technical cooperation for countries with economies in transition.

The norms, standards and conventions developed at UNECE in the areas of environment, transport, trade, statistics, energy, forestry, housing and land management, innovation or population, offer practical tools to improve people's daily lives. Many are used worldwide, and a number of countries from outside the region participate in work of UNECE.

UNECE’s multisectoral approach helps countries to tackle the interconnected challenges of sustainable development in an integrated manner, with a transboundary focus that helps devise solutions to shared challenges. With its unique convening power, UNECE fosters cooperation among all stakeholders at the country and regional levels.
TRANSPORT IN UNECE

Today, UNECE services 60 United Nations inland transport legal instruments. Several of the legal instruments are global either by design or because their success has caused them to grow beyond the ECE region. In addition to negotiating the amendments to existing legal instruments, UNECE has been active in facilitating new legal instruments. Its normative activities are enhanced with developing methodologies, guidelines, and definitions on subjects such as transport planning, data collection and the collection of transport statistics. UNECE’s work on transport is governed by the Inland Transport Committee (ITC) and its 21 Working Parties, which are in turn supported by more than 40 formal and informal expert groups and in cooperation with 9 treaty bodies (Administrative Committees). Annual sessions of ITC are the key moments of this comprehensive intergovernmental work, when the results from all subsidiary bodies, as well as the UNECE Sustainable Transport Division, are presented to ITC members and contracting parties.

In addition to servicing ITC and its subsidiary bodies, the Division also services other intergovernmental bodies including the ECOSOC Committee of Experts on the Transport of Dangerous Goods and on the Globally Harmonized System of Classification and Labelling of Chemicals, as well as 9 treaty bodies of United Nations legal instruments and the TIR Executive Board. In cooperation with UNESCAP, UNECE Sustainable Transport Division supports the United Nations Special Programme for the Economies of Central Asia (SPECA). It also annually alternates with UNESCAP as the secretariat to the SPECA Thematic Working Group on Sustainable Transport, Transit and Connectivity. In cooperation with the UNECE Environment Division and WHO Europe, the Division services the Transport, Health and Environment Pan-European Programme (THE PEP). It ensures the management and oversight of the Trans-European North-South Motorway (TEM) and the Trans-European Railway (TER) projects. The Division supports the accession to and implementation of the UN legal instruments through policy dialogues, technical assistance, and analytical activities with the priority of promoting regional and subregional cooperation and capacity-building. Finally, since 2015, UNECE hosts the secretariat of the United Nations Secretary-General’s Special Envoy for Road Safety and since 2018 the secretariat of the United Nations Road Safety Fund (UNRSF).
ACKNOWLEDGEMENT

This Stress test framework for evaluating the resilience of transport systems is a product of work of the United Nations Economic Commission for Europe (UNECE) Group of Experts on Assessment of Climate Change Impacts and Adaptation for Inland Transport. This work as well as the elaboration of the Framework was coordinated by Mr. Lukasz Wyrowski (UNECE secretariat).

The main authors are:

Prof. B.T. Adey
Institute of Construction and Infrastructure Management, Swiss Federal Institute of Technology in Zürich

H. Nasrazadani

Other authors are:

K. Chambers
Engineer Research and Development Center, USACE

Dr. C. Walker
United States National Centre for Atmospheric Research

Prof. J. Dora
Climate Sense

Substantive inputs were provided by:

T. Popescu
Directorate General for Infrastructure, Transport and Mobility of France

J. Brooke
PIANC

L. Wyrowski
UNECE
TABLE OF CONTENTS

UNITED NATIONS ECONOMIC COMMISSION FOR EUROPE .. iii
TRANSPORT IN UNECE ... iv
ACKNOWLEDGEMENT ... v
EXECUTIVE SUMMARY .. viii
INTRODUCTION ... ix

CHAPTER 1 CONTEXT - CLIMATE CHANGE HAZARDS .. 1
1. **CLIMATE IMPACT NOW** ... 1
2. **CLIMATE IMPACTS TO TRANSPORTATION SECTORS** 2
 (a) Road ... 2
 (b) Rail .. 3
 (c) Ports and Inland Waterways (IWW) ... 4
 (d) Airports .. 5

CHAPTER 2 USE OF STRESS TESTS TO DETERMINE IF INTERVENTIONS ARE NEEDED TO ENSURE TRANSPORT INFRASTRUCTURE PROVIDES AN ACCEPTABLE LEVEL OF SERVICE IN THE CONTEXT OF CLIMATE CHANGE .. 7

CHAPTER 3 STRESS TEST STEPS .. 11
1. **GENERAL** .. 11
2. **DEFINE THE STRESS TEST** ... 11
3. **DETERMINE YOUR APPROACH** .. 12
4. **DETERMINE YOUR TRANSPORT SYSTEM REPRESENTATION (INFRASTRUCTURE, ENVIRONMENT, AND ORGANISATION)** ... 13
 (a) Define boundaries .. 14
 (i) Definition of the considered system .. 14
 (ii) The spatial boundaries ... 15
 (iii) The temporal boundaries ... 15
 (b) Define events .. 16
 (c) Define scenarios .. 18
 (d) Define relationships ... 19
 (e) Determine models ... 20
5. **ESTIMATE RESILIENCE** .. 20
6. **EVALUATE RESILIENCE** .. 21
7. **DETERMINE PARTS OF SYSTEM TO BE ANALYSED IN MORE DETAIL** 22

REFERENCES .. 25
LIST OF FIGURES

Figure I Schematic overview of ISO standards and stress testing [adapted from ISO 14090 (ISO 2019)] x

Figure II Some examples of climate change impacts on transportation infrastructure and operations (UNECE 2020)... 2

Figure III Example of a simple event tree for the definition of scenarios (Adey et al. 2016) 18
EXECUTIVE SUMMARY

This document outlines a comprehensive framework for conducting stress tests and evaluating the resilience of transportation systems.

It is targeted at stakeholders engaged in transportation planning, risk analysis, and decision-making processes. It includes policymakers, transport authorities, engineers, and consultants, providing them with a standardized procedure to conduct stress tests and estimate the resilience of their system using both qualitative and quantitative approaches.

Moreover, the framework emphasizes the importance of addressing uncertainties and offers guidance on identifying critical system components, potential interventions, and areas for further analysis. By following this framework, transportation stakeholders can enhance their understanding of system vulnerabilities, make informed decisions, and develop effective strategies to improve the overall resilience of transport networks.

This document should be connected with other standards and guidelines on risk/resilience assessment and adaptation of transportation systems to climate change, including ISO 14090 (ISO 2019), ISO14091 (ISO 2021), BS 8631 (BSI 2021), UIC’s RailAdapt (UIC 2017), PIARC’s International climate change adaptation framework for road infrastructure (PIARC 2015), and PIANC’s climate change adaptation planning for ports and inland waterways (EnviCom WG 178).

1 International Union of Railways
INTRODUCTION

This stress testing framework builds upon the paper by Adey et al. (2016) and provides practical guidance on how to define and apply one or more stress tests on transport systems. The functioning of society depends on the transportation of goods and persons and the infrastructure required to enable transportation is built to ensure that this can happen in specified ways – that is, built to provide specified levels of service.

As losses in service due to disruptive events (e.g., natural hazards such as floods, heavy snowfalls) can have significant societal consequences (chapter 1), the transport infrastructure should be managed in such a way that the consequences of extreme events are minimised, taking into consideration their available resources and their potential return on investment. This framework (in chapters 2 and 3) shows how stress tests can be used to determine if interventions are needed to ensure transport infrastructure provides an acceptable level of service in the context of climate change hazard.

Case studies on road- and rail-networks will be developed to illustrate the approach, giving real-life examples of application.

The stress test concept can be used as part of an assessment process that helps to identify impacts whilst formulating a plan for adaptation to climate change or to deal with other risks. ISO 14090:2019 “Adaptation to climate change – Principles, requirements and guidelines” is the benchmark standard for adaptation planning, and calls for impact assessments, which then are prioritised whereby plans are then drawn up to deal with these impacts (ISO 2019). Stress tests can be used to determine the resilience of the transport system in specific situations, by assessing how it will perform in these specific situations, i.e., will it be able to provide specified level of service for which it was built.

Stress tests provide another way of carrying out an impact analysis and as such, would comply with ISO 14090 requirements; please refer to Figure I. Stress testing complements vulnerability and risk analysis by evaluating the infrastructure’s ability to withstand extreme conditions. While vulnerability and risk analyses identify potential weaknesses based on known hazards and historical data, stress testing simulates real-world scenarios, e.g., extreme events, traffic spikes, and unexpected failures, revealing some vulnerabilities and weaknesses that might not surface in regular assessments. By subjecting the network to such stressors and evaluating their effect on service, hence consequences for human activities, infrastructure managers can assess its resilience, identify critical weak points, and devise adaptive strategies to enhance the transportation network’s resilience.
A stress test can provide valuable input into an adaptation plan that addresses many climate change impacts within a transport system, potentially both as an early contribution to such a plan, and during the drafting of a more comprehensive adaptation plan. This integrated approach helps build more robust and climate-resilient transportation systems that can continue to function effectively and safely despite the challenges posed by climate change.
CHAPTER 1

CONTEXT - CLIMATE CHANGE HAZARDS

1. CLIMATE IMPACT NOW

Globally, we face a climate crisis that threatens our ability to sustain safe, reliable, available, and equitable transportation services to the communities that need them. Adapting to future impacts of climate change is no longer a concern to be postponed: it is an issue to be dealt with now. In fact, the World Economic Forum's Global Risk Report identifies the failure to create policy to address extreme weather and climate change as one of our greatest short to medium-term global threats (WEF 2019). The impacts of climate risks are being felt now, and we are presented with an unprecedented opportunity to understand those risks and prepare for them so that impacts can be reduced for all our communities.

In the most recent report written by the International Panel on Climate Change (IPCC AR6 2022), widespread and pervasive impacts have been observed in human and ecological systems due to increases in the frequency and intensity of climate and weather extremes. The IPCC report divides climate impacts and risks into several categories: observed, near-term (2021–2040), mid (2041–2060) and long-term (2061–2100). The magnitude and rate of projected climate change impacts in these categories depends on the near-term mitigation and adaptation interventions to reduce emissions (i.e., Representative Concentration Pathways, IPCC AR6 2022). Regardless of any interventions there are a variety of adverse losses and damages to be expected, especially for small islands and megacities located in low-lying coastal areas (Monioudi et al. 2018; Storlazzi et al. 2018).

The U.S. Global Change Research Programs Fourth National Climate Assessment echoes the findings of IPCC AR6, mentioning that 'thousands of studies' have documented global changes in atmospheric, surface, and ocean temperature; diminishing sea ice, melting glaciers, rising sea levels, ocean acidification, and increasing water vapor (USGCRP 2018). These effects can be divided into two categories based on the impact they have on a system's intended functionality (e.g., safe and efficient travel). The first category includes chronic and long-term changes in weather patterns that stress a system into delivering its intended function at a new steady state. These climate hazard stressors can include for instance precipitation patterns, rises in temperature, sedimentation, sea level rise, and coastal erosion. The second category includes episodic disruptions that require a system to absorb a shock and attempt to recover to its former functionality. These shorter-term stressors can often have major regional impacts that may be difficult to recover from or create lasting change. These disruptions include more commonly known climate extremes like riverine flooding, landslides, debris flows, ice storms, coastal storms, wildfires, drought, and extreme temperatures.
2. CLIMATE IMPACTS TO TRANSPORTATION SECTORS

The transportation sector is characterized by long-lasting and complex infrastructure systems that can take many years to adapt to stressors and disruptions (Vajjarapu et al. 2020). The transportation sector’s climate vulnerabilities can be characterized in several ways. Direct pathways of disruption focus on disruptions to transportation infrastructure itself and has traditionally been the focus of transport system vulnerability research. A list of example impacts can be found in Figure II, with more detailed explanations of sector-specific impacts in the sections to follow.

Figure II Some examples of climate change impacts on transportation infrastructure and operations (UNECE 2020)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Precipitation</th>
<th>Sea levels/storm surges</th>
<th>Waterways and ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Higher mean temperatures; heat waves/droughts; changes in numbers of warm and cool days</td>
<td>• Changes in the mean values; changes in intensity, type and/or frequency of extremes</td>
<td>• Mean sea level rise</td>
<td>• Damage to infrastructure, equipment and cargo</td>
</tr>
<tr>
<td>• Reduced snow cover and arctic land and sea ice; permafrost degradation and thawing</td>
<td></td>
<td>• Increased extreme sea levels</td>
<td>• Higher energy consumption for cooling</td>
</tr>
<tr>
<td>• Thermal pavement loading and degradation; Asphalt rutting</td>
<td>• Inundation, damage and wash-outs of roads and bridges; Increased landslides; Bridges scour</td>
<td>• Erosion of coastal roads; Flooding, damage and wash-outs of roads and bridges</td>
<td>• Potential for longer shipping seasons</td>
</tr>
<tr>
<td>• Thermal damage to bridges; Increased construction and maintenance costs; Reduced integrity of winter roads and shortened operating seasons</td>
<td></td>
<td></td>
<td>• Occupational health and safety issues during extreme temperatures</td>
</tr>
<tr>
<td></td>
<td>• Flooding, damage and wash-outs of bridges; Problems with drainage systems and tunnels; Delays</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Track buckling; Infrastructure and rolling stock overheating/failure; Slope failures; Signing problems; Speed restrictions; Asset lifetime reduction; Higher needs for cooling; Shorter maintenance windows</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bridge scour; Catenary damage at coastal assets; Disruption of coastal train operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Infrastructure inundation; Navigation restrictions in inland waterways due to extreme low or high flow conditions</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Asset inundation; Navigation channel sedimentation; Maintenance costs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Along with direct impacts listed above, Markolf et al. (2019) identified the need to understand indirect disruption to capture the complexities revealed within transportation systems and other critical infrastructure systems like energy, water, fuel, communications, and communities. Transportation systems do not exist in isolation and an understanding of these strong interconnections is important to eventually identifying adaptive interventions. For example, if a roadway or railway into a port experiences flooding, then the movement of goods, services, and employees of the port are affected. The port’s functional resilience is decreased no matter the status of its infrastructure. Keeping these indirect disruptions in mind, the following sections identify some climate change-related impacts felt by different transportation sectors.

(a) Road

In terms of road transport, structural failures are anticipated in polar regions due to permafrost thaw and increased erosion related to ocean warming, storm surge flooding and loss of sea ice (From IPCC – Melvin et al. 2017; Fang et al. 2018; IPCC Cross Chapter Paper 6). Climate flooding would double the number of delays and lost trips in the Boston metropolitan area by 2100 (Suarez et al. 2005). Median cost of not adapting to climate change impacts on paved roadways in Ghana would be $473.72 million by 2100 (Twerefou et. al 2014). Climate change could impact between $1.3 billion and $4.9 billion of primary roadways in Mexico.
The cost of reconstruction of roads due to climate change in France is estimated to €22 billion between 2020 and 2050 (Carbone 4 2021). US DOT Climate Action Plan lists notable potential impacts to road systems:

- More frequent and severe flooding of underground tunnels and low-lying infrastructure requiring draining and pumping,
- Increased thermal expansion of paved surfaces, potentially causing degradation and reduced service life, due to high temperatures and increased duration of heat waves,
- Higher maintenance and construction costs for roads and bridges due to increased temperatures and exposure,
- Asphalt degradation and shorter replacement cycles, leading to limited access, congestion, and higher costs due to higher temperatures,
- Culvert and drainage infrastructure damage due to precipitation intensity or snowmelt timing,
- Increased risk of vehicle crashes in severe weather.

(b) Rail

Railways are a global asset, with estimates of conventional railways totaling around 1,060,000 line kilometers in 2018 (IEA 2023). Many of these railways and supporting infrastructure were constructed more than 150 years ago and their performance during weather extremes is uncertain (Palin et al. 2021). In terms of rail transport, heat-related delays and infrastructure damage could cost the United States up to $60 billion by 2100 if no changes are made to the asset management regime (Chinowsky et al. 2019). Further, impacts from sea-level rise, storm surge, and coastal flooding threaten further economic losses and disruption (Neumann et al. 2021). These disruptions will have cascading impacts across global supply chain and freight transportation networks as well as disruptions to commuter mobility and community accessibility. To summarize these impacts, Palin et al. (2021) have identified the following:

- System downtime, derailments, slower travel times due to rail buckling and thermal expansion on extremely hot days,
- Damages to overhead lines, rock falls, and icing and breakage due to low temperatures and freeze-thaw action,
- Slope failures, flooding, electronic equipment damage, and bridge scour due to flooding and landslides,
- Infrastructure slope failure, track misalignment, and pole misalignment due to drought and soil shrinkage/drying,
- Scour and structural damage due to coastal flooding and waves.

Considering road and rail transport together, in the East Coast of the United States, for example, 3,800 km of roadways and railways are at risk for temporary or permanent inundation should sea levels increase by 58 cm (Wright and Hogan 2008). In Europe, ten-fold increases in damages associated with buckled pavements due to heat stress, coastal and inland flooding, windstorms, and forest fires are possible (Forzieri et al. 2018). A further compounding reality is that many road and rail infrastructure networks already exhibit significant deterioration and have been built (Neumann et al. 2021).
(c) Ports and Inland Waterways (IWW)

Ports and Inland Waterways (IWW) are severely vulnerable to numerous climate stressors and disruptions because of their geographic location in low-lying areas adjacent to coasts and river plains; their highly streamlined, optimized, and unique regional operations, and the far-reaching and occasionally compounding supply chain impacts of any delays or accidents (PIANC 2020A). For example, Christodoulou and Demirel (2018) found that up to 60 per cent of the European Union seaports may be under high risk for inundation by 2100 under maximum SLR (1 meter). Ports and IWW are critical to global trade, moving over 11 billion tons of goods (or 80 per cent of global trade) and they are particularly critical for developing countries, who account for 61 per cent of the total global maritime trade (UNCTAD 2022). Right now, if no adaptation measures are taken, estimates of global cost to shipping due to sea level rise and stronger storms could total an additional US$25 billion every year by 2100 (more than recent total annual operating profits; Van Houtven et al. 2022).

The World Association for Waterborne Transport Infrastructure (PIANC) describes a variety of climate impacts from the navigation zone to the processing and manufacturing plants to the hinterlands where products are bound (PIANC, 2020A, 2020B). These impacts include:

- Suspension of port operations and damage to infrastructure due to overwhelmed draining systems or high groundwater,
- Terminal inundation or levee overtopping due to high river flow levels or storm surge,
- Impacts to navigation due to high river flow velocities or sea state changes (agitation, extreme waves),
- Channel closures or draft restrictions due to low river flow velocities or drought,
- Draft restrictions or increased dredging costs due to sediment or debris transport, accumulation, and erosion,
- Reduction or restrictions to port operations due to low visibility (fog, snow or other precipitation),
- Infrastructure degradation or corrosion above design expectations due to changes in water chemistry,
- Impacts to navigation and port operations due to changes in wind speed, strength, direction, or duration,
- Damage from exposure of employees, infrastructure, and goods due to extreme heat, humidity or cold,
- Additional requirements or additional operational or maintenance requirements due to changes in ecology - vegetation growth, species migration, invasive species.
(d) Airports

Air travel is vulnerable to even short weather events, causing significant and widespread cancellations or delays (Ryley et al. 2020). The projected climate impacts most likely to affect aviation directly are issues related to changes in precipitation and temperature, wind, extreme weather, and sea level rise (Burbidge 2018). Presently, many airports are only 10-20 feet above mean sea level with a few below sea mean sea level (Schiphol Airport, Amsterdam; Louis Armstrong Airport, New Orleans; Budd and Ryley 2012). That number could increase greatly depending on the rate of sea level rise. By 2100, one study estimates 100 airports are projected to be below mean sea level under 2°C of warming with a large number of airports at risk in Europe, Northern America and Oceania, but with the highest risks in Southeast and East Asia (Yesudian and Dawson 2021). This same study identified a common concern for many transportation systems: adaptation financing will likely not be equitably available to small coastal airports. This could result in devastating consequences for low lying islands that rely on air travel as an economic, social, and medical lifeline (Yesudian and Dawson 2021). The conversation about climate change has primarily been focused on mitigation, but adaptation is an emerging concern (Ryley et al. 2020). In 2018, 86 per cent of the European Organization for the Safety of Air Navigation’s survey respondents indicated that climate change would be essential for the industry (Burbidge 2018). Several additional impacts identified by the USDOT (2022) and others include:

- Air traffic disruption due to severe weather and precipitation events that impact arrival and departure rates or require flight cancellations, sometimes for extended periods of time,
- Limits to aircraft performance (i.e., payload or range) due to increased temperatures,
- Challenges to airplane takeoff and landing due to shifting wind direction, wind strength, and increasing temperatures,
- Turbulence and travel time changes due to changing wind patterns,
- Reductions to airport capacity and network disruption due to rising sea levels.
CHAPTER 2

USE OF STRESS TESTS TO DETERMINE IF INTERVENTIONS ARE NEEDED TO ENSURE TRANSPORT INFRASTRUCTURE PROVIDES AN ACCEPTABLE LEVEL OF SERVICE IN THE CONTEXT OF CLIMATE CHANGE

To manage infrastructure in a way to cost-efficiently minimise the potential impact of extreme events on the provided service and thus limit consequences for human activities, it is necessary for transport infrastructure managers to:

(a) have a clear idea of the set of services that the infrastructure is providing and an understanding of its resilience against potentially disruptive natural hazard events, and,

(b) to understand how the resilience of a transportation network can be improved to counteract the loss of service following a hazard event and to provide specified levels of service during and following the occurrence of extreme events – that is, to set resilience targets.

This framework contains the steps to measure the resilience of transport systems with respect to a defined service or set of services and set of targets of resilience, using stress tests. The steps will help ensure that resilience deficiencies and their causes are correctly identified and that the most cost-efficient intervention can be taken to improve the resilience to an acceptable level.

The steps are to be done in an iterative fashion from a high general level to a low detailed level if needed. The iterations are to be done keeping in mind that for more detailed quantitative evaluations, more time and possibly more computer support will be required. Stress tests are performed at each iteration.

A stress test is a set of one or more hypothetical scenarios designed to help determine if a transport system can continue to provide an acceptable level of service when subjected to one or more potentially disruptive events. The scenarios can be designed assuming that all parts of the system will be in a reference / base-line condition, or be designed assuming that one or more parts of the system are in a worse than reference / base-line condition. For example, if a stress test scenario is to be done to help verify if a regional transport system is likely to function well if subjected to a 1/500 year rainfall event in the upcoming calendar year, it can be done assuming that the system operates as it is intended, or it can be done assuming one or more of the following example scenarios:

(a) the scour depths due to the flood are [25 per cent] greater than the depths considered typical for the resulting flood waters,

(b) the flood protection mechanisms can hold back [25 per cent] less water than the amount they were typically designed for,
(c) the number of work crews available to restore damaged transport infrastructure is [25 per cent] lower than typically planned for such situations, or

(d) the need for transport on the infrastructure during or after the event is [25 per cent] higher than what typically would occur in this situation.

The level of resilience considered acceptable varies from situation to situation. It depends on:

- norms on individual and societal risk, where individual risk indicates the distribution of the risk over the potentially affected individuals, and societal risk describes the relationship between frequency and the number of people suffering from a specified level of harm (ERM 1998),
- whether there are possibilities to increase the resilience and how costly these are, which is similar to the economically optimal level of risk.

Stress test scenarios should be done first with low levels of modelling detail, e.g., structured expert opinion, and then repeatedly, at increasingly higher levels of modelling detail, e.g., computer simulations, until it is decided that the level of resilience is either acceptable or not. The higher the level of modelling detail the greater the time and effort required to conduct the stress test.

As the notion of acceptable level of resilience is subjective, deciding whether the level of resilience is acceptable or not requires a dialogue between the stakeholders, to collectively define what should be considered as an acceptable level of resilience. This definition may vary between transport systems, asset managers, and regions.
Once the results of the stress tests are generated and evaluated, it can be decided if the system passes or fails the stress tests. If the resilience level is acceptable, no interventions are required. If the resilience level is not acceptable, resilience enhancing interventions are required to increase the resilience to an acceptable level.

The interventions may be on any part of the system, e.g.:

- diverting a river so it does not come in contact with infrastructure during a flood,
- strengthening of infrastructure so that it can resist the flood waters during a flood,
- constructing a second road so that there is little disruption to traffic flow if the first road is washed out from flood waters,
- modifying the transport operations schedule, to minimize excessive delays
- implementing forecasting and warning systems
- enhancing maintenance and inspection regimes
- adopting an adaptation pathway or and adaptive management approach

The planned interventions cannot require the use of more resources than are available and should achieve the maximum resilience possible for the available resources.
CHAPTER 3

STRESS TEST STEPS

1. GENERAL

The steps to conduct a stress test that are presented in this section have been constructed keeping in mind
that different decision situations will require different types of models that will provide different levels of
detail. In addition, in many cases it is desirable to conduct stress tests iteratively. This is consistent with the
principles of:

- working in phases, e.g., qualitative analysis over a short period of time first, and quantitative
 analysis over a longer period later if required,
- working from a higher level of modelling to a lower level of modelling, e.g., first analysis delivers
 less detailed information, and later analysis delivers more detailed information, and
- thinking in possibilities, e.g., there are many possible stress tests to conduct and many ways to
 perform stress tests once they are set.

2. DEFINE THE STRESS TEST

The define the stress test step is to determine what needs to be checked to be able to say that there are
acceptable levels of infrastructure-related resilience due to natural hazards or that resilience enhancing
interventions need to be planned and executed. This includes definition of the [one or more] stress test
scenarios to be considered in each stress test, and the definition of the acceptable levels of reductions in
service and increases in intervention costs, e.g., there is an acceptable level of infrastructure-related resilience
with respect to flooding if a scenario of a 100-year rain-fall event does not cause losses in infrastructure
restoration costs and lost travel time in excess of 1 per cent of GDP.

This step includes the generation of preliminary thoughts on the area and time period to investigate the
scenarios to be considered for each stress test. It will affect the definition of the system representation, and
the requirements to conduct the stress test, in terms of both input, e.g., man-power, and output, e.g., the
accuracy of the results. It will also affect the scope and the level of detail of the assessment. Thought needs
to be given to the levels at which the stress test needs to be conducted. For example, is it important that
the resilience to both flood and landslides is above a threshold value, thus having a stress test that features
both flood and landslide scenarios, or is it important to have the resilience to floods is above one threshold
value, and the resilience to landslides is above another threshold value, or both, thus having two separate
stress tests one featuring flood scenarios and landslide scenarios.

The definition of the stress test is difficult in that it requires multiple stakeholders expressing their perspectives
on multiple issues, as well as sharing their expectations on the insights to be provided by the stress test. The
stakeholders to be involved depend on the specific situation, but are likely to be the infrastructure
managers, local authorities, politicians, local administrations, the environmental protection agencies, local development representatives, and technical experts with special understanding of different parts of the transport system, e.g., flooding, infrastructure (e.g., structural engineers), traffic flows, reconstruction. An example issue addressed during this step could be concerning the extent of traffic disruption considered acceptable following the occurrence of a scenario of a 1/500-year rainfall event: an acceptable limit may be defined by combining the total amount of additional travel time and the time with which the infrastructure is to be restored.

This step results in a set of clear questions which, once answered through each stress test, will either lead to the conclusion that the current levels of infrastructure resilience to natural hazards are acceptable or, alternatively, that resilience enhancing interventions need to be planned and executed.

3. DETERMINE YOUR APPROACH

The determine approach step involves determining:

(a) which type of approach, e.g., qualitative, semi-quantitative or a quantitative approach will be used, in which form, and at what point in the process. In general, qualitative approaches take less time, are more approximate and are more holistic, and quantitative approaches take more time, are more exact and are used to investigate specific sets of scenarios. Qualitative approaches should be used first in the analysis of resilience, and if the results of the qualitative approaches are not satisfactory, then the more in-depth quantitative analyses can be done on the parts of the system where more precision is required. The increase in the level of detail from moving from a qualitative analysis to increasingly sophisticated quantitative analyses can also be done in an iterative way, e.g., by first employing 1D hydraulic models to predict the extent of flooding, and then proceeding to 2D or 3D models, if needed, and if feasible, considering the available resources.

(b) whether or not computer support will be used, and if yes, which form and at what point in the process. In general, the more sophisticated the quantitative approach is, the more computer support is required. The exact computer support required will, of course, depend on the parts of the system to be investigated and the level of detail expected. For example, if one is to use computer support to investigate the possibility of bridges being overtopped in a flood situation, the computer models will have to be able to simulate three-dimensional water flow.

(c) the level of involvement of representatives from different stakeholder groups, in which form and at what point in the process. For example, a qualitative approach may be done by having an analysis team prepare the different parts of the stress test, and then, in a workshop with all relevant stakeholders, present and discuss the analysis and the results. After obtaining feedback from the stakeholders, the analysis team could revise the analysis if necessary. The number and frequency of the workshops will of course depend on the duration of the project and wishes of the stakeholders. A nine-month qualitative analysis might, for example, have 5-7 to workshops each 4 hours in duration. It is noteworthy that in actual situations, more or less involvement from various stakeholders might be necessary.
The determine approach step also involves making decisions about how the resilience to multiple hazards is to be considered, which can be a challenging area, especially when dealing with cumulative values and combined hazards. For example, determining if thresholds for acceptance are to be placed on the consequences associated with a stress test featuring scenarios of one hazard event or the aggregated consequences from a stress test featuring scenarios of multiple hazard events. More specifically, should a threshold for acceptance be placed on the amount of elongated travel time caused by, for example, a scenario of a 1/100 year 24hr rainfall event and a scenario of a 1/100 year earthquake event separately, or should there be a threshold for scenarios that feature both rainfall and earthquake events and thus consider their combined effect on performance of the network.

4. DETERMINE YOUR TRANSPORT SYSTEM REPRESENTATION (INFRASTRUCTURE, ENVIRONMENT, AND ORGANISATION)

The define system representation step involves:

(a) defining the boundaries of the system both spatially and temporally,

(b) defining the events to be included, and

(c) defining the relationships between the events.

Remembering the principle to work from a high level of modelling to a low level of modeling, the type and number of events considered vary depending on the level of detail required in the analyses/model. This means, for example, that the infrastructure events to be included in a first iteration of the process might be defined through modelling a 10 km road link as 3 bridges, 4 road sections and a tunnel, which can each either be working or not working.
In the second iteration of the process, the infrastructure events to be included might be defined through modelling the 10 km road link as in the first iteration, except subdividing each of the bridges into elements, such as columns, bearings, decks and abutments. The define system representation step will likely require numerous iterations the first time it is done. If a stress test is done more than once on the same system, e.g., at five-year intervals, there will be a reduction in iterations, because the desired level of detail will be known ahead of time.

The substeps required are: (a) define boundaries, (b) define events, (c) define scenarios, (d) define relationships, and (e) determine models. They are explained in the subsequent sections.

(a) Define boundaries

The define boundaries step consists of defining the system that is going to be analysed/modelled, both spatially and temporally.

(i) Definition of the considered system

This system includes all things required to determine if there are acceptable levels of resilience due to natural hazards, including:

- the natural environment, e.g., amount of rain, amount of water in rivers,
- the physical infrastructure, e.g., the behaviour of a bridge when subjected to high water levels, and
- human behaviour, e.g., traffic patterns when a road bridge is no longer functioning, how restorations interventions are prioritized.

As it is necessary to consider the system over time, it is useful to consider the spatial and temporal correlation between events and activities within the investigated time period. This includes the consideration of assumptions, agreements as to how the system will react in specific situations, and the consideration of cascading events. It should be kept in mind that conducting stress tests requires taking into consideration realisations of all relevant stochastic processes within the investigated period. Whether all relevant stochastic processes have been considered depend on the opinion of the stakeholders.

This in turn requires the building of models that are sufficiently good representations of the evolutions and interactions of the hazards, the infrastructure, and the consequences of the hazards, so that there is an appropriate understanding of the system and that the risks and the effectiveness of the interventions can be determined. For example, heavy rainfall in a region may cause flood waters to damage bridges but also trigger landslides that may come in contact with the roads. Analysts in this case are going to have to model how much rainfall in what period of time can trigger a landslide. One option to model this at a very high abstract level is simply with expert opinion. Another yet more complex way is to construct a quantitative model that estimates the stability of surrounding slopes of a road and thus the triggering likelihood of a landslide considering factors such as the amount of rainfall per unit time, the amount of water currently in the soil, mechanical characteristics of the soil, and the amount of evaporation possible, including temperature variations over time. Analysts and stakeholders will have to determine the level of detail that they consider sufficient.
(ii) The spatial boundaries

The definition of spatial boundaries defines the part of the natural and man-made environment to be specifically analysed/modelled, as well as how it is to be subdivided. This includes the definition of where the assets are located, where events can occur, and where the consequences could take place.

The spatial boundaries in system analysis can vary depending on the elements being considered, introducing complexities in stress test scenarios. These elements could be limited to the practical knowledge and available data yet can be iteratively updated once new knowledge or data are obtained. For example, while the infrastructure under review may be confined within a city's physical boundaries, the relevant rainfall data could originate from a larger catchment area. Specifying the possible locations of the source events, hazards and objects that are of concern for the general resilience assessment is relatively straightforward. However, specifying these parameters to define relevant scenarios to conduct appropriate stress tests, i.e., those that yield more insight about the resilience of the system and collectively cover all aspects of system's resilience, is more challenging. This, indeed, requires definition of scenarios also that the events that might cause hazards, some of which may be hard to identify because they happen outside the area in which the impact of interest occurs, can be modelled. For example, the failure of a dam upstream might lead to flooding in a region beyond the initially defined area of interest. Another significant challenge in specifying the spatial boundaries of the scenarios is due to the fact that consequences of system disruptions can extend beyond the manager's direct area of responsibility. For example, the collapse of a highway bridge on a trans-European highway network can have consequences on the free flow of goods in many countries.

(iii) The temporal boundaries

As with the spatial boundaries, the temporal boundaries are different depending on the part of the system being analysed. The definition of the temporal boundaries determines the period over which the natural and man-made environment to be specifically analysed/modelled, as well as how this period is to be subdivided. For example, the rainfall event considered to occur in the upcoming year may cause flooding which has consequences that extend over two years following its occurrence. Additionally, one could consider a successive occurrence of the 'second' 1/100 year rainfall event in the considered time period, owing to factors such as saturated catchments and lack of time for the 'first' event to drain off.

Additionally, a system can be analysed/modelled as being static or dynamic. When the system is analysed/modelled as being static, the changes over time are not considered, e.g., the growth in traffic flow. When it is analysed/modelled as being dynamic, they are. The decision on which is used is situation dependent. One important consideration when deciding to model a system as static or dynamic is the time required to do the analysis, as dynamic models take considerably longer than static ones. Another important consideration is how dynamic the system is, i.e., are changes expected to occur within the system during the considered timeframe? For example, if one is to construct a stress test on an urban transport infrastructure once every 10 years and a new highway is to be built in the region during that 10-year period, it would indicate that the system should be modelled dynamically to capture the changes happening in each year of the 10-year period.

This step ends with clear definitions of the spatial and temporal boundaries of each part of the system to be analysed.
(b) Define events

The define events step involves identification of all events (cascading and non-cascading) that are to be analysed/modelled. These events can, in general, be grouped from source events to societal events. Source events are ones that, at least from a modelling perspective, are considered to simply happen and initiate the occurrence of all forthcoming events. Societal events are events to which human activity can be associated and, therefore, can be quantified when estimating resilience. They relate to consequences of the considered stressors on human activity. All events other than the societal events are only precursors to societal events and are only considered in the estimation of resilience by how they effect human activity, e.g., repairing a bridge, or not being able to travel.

Although the number of event types considered can vary depending on the specific type of problem and the desired level of detail in the analysis/model, the five basic types of events considered are source events, hazard events, infrastructure events, network use events, and societal events. All events can be described in space and time, and measures of the intensities of interest should be given. The areas range from small, e.g., a tunnel collapse, to large, e.g., to traffic patterns being interrupted across Europe. The time periods can range from a few minutes, e.g., avalanches, to over a few days, e.g., flood, to several months, e.g., heat waves. Measures of the intensities of the events should represent the values of event attributes that are of interest. The number of intensity measures used to describe the events depends on the problem investigated and the level of detail required in the analysis. Details are given in the table.

The necessary detail to be used depends on the specific problem and the level of detail desired. If events at any level, or complete ranges of the values of intensity measures are excluded, it should be explicitly explained and documented why, because in the following risk estimation, the risk coming from those events will be excluded.

This step ends with the generation of a list of all events to be included in the system representation.
Basic event types

<table>
<thead>
<tr>
<th>Event type</th>
<th>Description</th>
<th>Examples</th>
<th>Comments</th>
<th>Example intensity measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>An event that may lead to a hazard event.</td>
<td>Rainfall, Snow</td>
<td>It is the first event in a scenario that will lead to a societal event. A source event may also be referred to as an initiating event.</td>
<td>For a rainfall source event, rainfall of pattern x with water per minute of over y mm/s for more than 5 hours.</td>
</tr>
<tr>
<td>Hazard</td>
<td>An event that may lead to an infrastructure event. A hazard event may also be referred to as a load event.</td>
<td>Flood, Landslide, Snow avalanches</td>
<td>A hazard event is normally considered to have a source event, but is sometimes modelled directly as a source event itself. In addition to leading to an infrastructure event, a hazard event may also lead to another hazard event, e.g., earthquake triggers landslide.</td>
<td>For a flood hazard event, water levels reaching x m depth for a duration of y hours in locations a, b and c, and amounts of water per second coming in contact with bridge i over j m/s.</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>An event that is a change in the infrastructure that may lead to a change in infrastructure use or a change in human behaviour</td>
<td>The state of all infrastructure objects being considered at each instance of time during a flood</td>
<td>In the determination of the infrastructure events thought must be given to which infrastructure object is affected by which hazard and the likely condition states that the object may have if subjected to a hazard. This is a difficult task as in many cases many objects could be affected but the effect might range from very small, e.g., yielding of a reinforcement bar in a bridge during an earthquake, to very large, e.g., collapse of the bridge.</td>
<td>For a bridge collapse, damage resulting in full closure of the road, damage results in the closure of one lane of traffic, damage resulting in no closure of the road.</td>
</tr>
<tr>
<td>Network use</td>
<td>An event that is a change in how the infrastructure is used that may lead to a change in human behaviour</td>
<td>The state of the use of the network following closure of part of the network due to the flood</td>
<td>The probabilities of these events occurring are particularly difficult to estimate as their occurrence depends on spatial and temporal correlation, and physical relationships between initiating events, hazards and infrastructure events. The latter, can lead to cascading events.</td>
<td>For example, due the freight corridor between Rotterdam and Genoa being closed, 50% of goods is put onto trucks, 40% of goods is diverted over other train routes and 10% is not delivered.</td>
</tr>
<tr>
<td>Societal</td>
<td>An event that is a change in human activity</td>
<td>The actions of persons or groups of persons to which a value can be placed including the restoration activities following a flood and the lost travel time incurred by the users of the network.</td>
<td>In order to model the actions of persons or groups of persons, it is often beneficial to group them into categories based on their general behavior, which in turn is coupled with how their behavior is to be modelled. Societal events may lead to other societal events. If they, however, do not, then a value needs to be assigned to the event. This value then enters the risk assessment as a consequence.</td>
<td>Amounts an infrastructure manager spends on reconstruction Amounts users spend in additional travel time Extent of economic loss due to the additional travel time for longer transportation or for non-delivery of goods</td>
</tr>
</tbody>
</table>
(c) **Define scenarios**

The define scenario step involves linking the events together from the source events to the societal events, in the form of an event tree. A very simple example is given in Figure III. The very simple example is used for clarity, but it should be clear that the event trees required in most situations will have many more branches and many more sub-categories of the events used in Figure III. To build the event tree, it is necessary to determine the value of the intensity measures defined in the define events step that will provide clarity on how events are considered to be related. The identification of the scenarios should be done in this step without an explicit estimation of their probability of occurrence or putting a value on the consequences.

Figure III Example of a simple event tree for the definition of scenarios (Ady et al. 2016)

<table>
<thead>
<tr>
<th>Initial system state</th>
<th>Source event</th>
<th>Hazard event</th>
<th>Infrastructure event</th>
<th>Network use event</th>
<th>Societal event</th>
<th>Consequences</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rain fall > a</td>
<td>Water levels >= b</td>
<td>Infrastructure not fully operational</td>
<td>Traffic patterns worse than category c occur</td>
<td>> 10% of vehicles stop travelling, infrastructure objects rebuilt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traffic patterns worse than category c occur</td>
<td><= 10% of vehicles stop travelling, infrastructure objects rebuilt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Infrastructure fully operational</td>
<td>Traffic patterns better than or equal to category c occur</td>
<td>non-normal vehicle movements, infrastructure objects rebuilt</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traffic patterns normal</td>
<td>Vehicles travelling normal, no interventions required</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Traffic patterns normal</td>
<td>Vehicles travelling normal, no interventions required</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x units of additional travel time, y units of reconstruction costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x units of additional travel time, y units of reconstruction costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x units of additional travel time, y units of reconstruction costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 units of additional travel time, 0 units of reconstruction costs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 units of additional travel time, 0 units of reconstruction costs</td>
</tr>
</tbody>
</table>
For each system representation there are an infinite number of scenarios and an infinite number of ways to represent these scenarios, i.e., an infinite number of ways to represent reality and how it will unfold over time. Particular care needs to be used in the selection of the appropriate scenarios to be included in each stress test to analyse, as the set of stress tests should cover everything important to the stakeholders. It is important to avoid arriving at the end of the stress testing process with a stakeholder realizing that a hazard, for instance earthquakes, was not dealt with by any of the stress tests performed.

In order to generate a sufficient set of scenarios to be included in different stress tests, it is useful to consider the following three possible starting points for the scenario generation:

- start with the source events and think forwards through how the infrastructure will be affected and then how humans will react to this,
- start with the societal events and think backwards through how the infrastructure would have to behave to cause such events, and
- start with infrastructure events and think in both directions.

Comprehensive identification of relevant scenarios is important because scenarios excluded in this step will not be included in further analysis and may result in an incorrect estimation of risk. To minimise the possibility of this happening, it is important that experts in each area, e.g., climate scientists and meteorologists, hydrologists and flood experts, civil and structural engineers, risk management specialists, geotechnical engineers, transportation planners and experts, traffic management specialists, environmental scientists, cybersecurity specialists, emergency management professionals, social and behavioral scientists, economists, and legal and regulatory experts are involved.

This step ends with a list of all scenarios to be analysed.

(d) Define relationships

To estimate the likelihood of the cascading events in the stress test scenarios, models of the relationships between the events are to be developed. For example, to determine the amount of water coming in contact with a bridge during a flood, it is necessary to model how the source of the water (rain), turns into surface runoff, and reaches the river. This model may take into consideration the amount of water that seeps into the ground, evaporates, or is held in temporary retention ponds. The amount of effort to be spent on this depends on the exact problem and the level of detail desired. For example, in some cases it may be sufficient to use fragility curves based on expert opinion to estimate the amount of damage that a single bridge might incur during a flood event.

In other cases, it may be desirable to use component-based fragility curves to estimate the amount of damage a large levee might incur during a flood event given the large number of components that may fail. In general, extra effort should be spent to achieve more detail when it is suspected that the results will add additional clarity for decision-making. If additional clarity is not provided, the extra effort is not worth it.

Although specific examples are given here, the general thoughts apply to all events, i.e., source events, hazard events, infrastructure events, network events and societal events. If possible, the availability of data for modelling relationships should be considered in determining the level of detail to be used. This step may involve investigating parts of the system in depth to ensure that the relationships between events are defined at the desired level of accuracy, e.g., data can be collected on rainfall patterns, water levels in rivers can be collected during rainfall events, bridge columns can be tested to see how they react to water...
pressures, roads can be closed to observe traffic patterns that might be associated with road closures, and tests can be done to see how long it takes to restore failed infrastructure.

This step ends with clear explanations of the relationships between all events.

(e) Determine models

Once the boundaries, events, scenarios and relationships to be analysed are determined, the specific models to be used to estimate the resilience are determined. It is emphasized that the choice of models needs to be done by engaging experts in the relevant fields to determine which models suit the analysis and how they should be implemented.

These models can range from approximations using expert opinion (Devia et al. 2015), e.g., experts discuss and agree that the 1/100 year rainfall will cause the overtopping of the bridge, to simple deterministic relationships, e.g., 1mm of rainfall in the catchment area increase the water height under the bridge by 0.5mm, to advanced simulation models, e.g., a 3D hydraulic model of the catchment area (Rong et al. 2020).

The determination of models includes the selection of the software such as HEC-RAS and Arc GIS, and an estimation of the required hardware and computation power, to be used if computer support is required (Adey et al. 2016, Hackl et al. 2018). This step ends with the selection of all models and software required to estimate resilience.

5. ESTIMATE RESILIENCE

In the estimate resilience step, the probability of occurrence of each of the scenarios and the values to be attributed to the societal events associated with each scenario if it occurs are to be estimated and, when desired, aggregated. For example, the amount of travel time incurred due to the 1/100 year rain-fall event and the 1/500 year rain-fall event, if these are the considered scenarios for a stress test, will need to be estimated and perhaps aggregated using the probability of occurrence of each one of those events in the upcoming year. If multiple measures of service are to be used, e.g., travel time and accidents, then both will need to be estimated for the 1/100 and the 1/500 year flood and aggregated. Additionally, values on a unit of travel time and on accidents will have to be determined if it is desired to combine the values into one single estimate of resilience. The most straight forward way to attribute a value to the societal events is through the estimation of their monetary values, e.g., a unit of time lost has a value of €20 and a light injury incurred in an accident has a value of €100,000. These values are often available in existing national or European codes or reference methodological documents, of which a non-exhaustive list can be found below:

- Handbook on the external costs of transport, European Commission, 2019
- Référentiel méthodologique pour l'évaluation des projets de transport, DGITM, France, 2014.

This step can be done with or without computer support, i.e., using a quantitative or qualitative approach, which, of course, can also be with varying degrees of detail, depending on the specific problem, the information, data and resources available. For instance, with computer support, the simulations of the reduction in measures of service such as travel time if the 1/100 year rainfall occurred, can be made, e.g., 1,000,000 hours, and then multiplied by the unit value of €20/hour. Without computer support, experts
would be asked what they believe the reduction in service would be if the 1/100 year rainfall occurred, and then multiplied by the unit value of €20/hour. Methods such as Delphi can be used to synthesize the opinion of experts.

Special attention is required to the certainty with which both the probabilities of occurrence and consequences of each of the scenarios can be estimated. It is advised to investigate the sensitivity of these values to the modelling assumptions and to consider this in interpreting/evaluating the results. Indicators of the sensitivity of these values are:

- the divergence of opinion among experts,
- the availability of information,
- the quality of information,
- the level of knowledge of the persons conducting the risk analysis, and
- the limitation of the models used.

The parameters varied in the sensitivity analysis should be the ones thought to have the most significant effect on the resilience values.

This step ends with the estimation of the transport system resilience for the stress test.

6. EVALUATE RESILIENCE

In the evaluate resilience step, the meaning of the estimated resilience to stakeholders is verified. This is true regardless of the type of approach, i.e., qualitative, semi-quantitative or a quantitative approach, used.

A large part of this evaluation is the consideration of how stakeholders perceive risks and the consideration of this over- or under-valuation with respect to the analyst’s point of view used in the estimate resilience step. Another part, however, is stepping back from the analysis and reconsidering if everything important was modelled in a sufficient way. As systems are never modelled perfectly, it can happen that, after this step, a decision maker takes a different decision than what the stress test might indicate. The deviation should, however, be explained. In that case, it may be relevant to try to conduct a stress test again, improving the model used for the transport system.

In this step, decisions are made as to whether or not the stress test has been satisfactorily done, including consideration of the appropriateness of the definition of the stress test, the approach used, the system representation used and the estimation of the resilience itself. This step ends with one of the following decisions being made:

(a) The stress test was conducted satisfactorily and resilience levels acceptable (Stress test passed);
(b) The stress test was conducted satisfactorily and resilience levels not acceptable (Stress test failed);
(c) The stress test was not conducted satisfactorily (Stress test provisionally passed or failed and more analysis is required).
When the stress test is judged not to have been conducted satisfactorily, it means that it has not been done to a level of detail, or in a way, where you can say whether or not the resilience levels are acceptable or not. This might happen because the system, or parts of the system, were not modelled in sufficient detail, or because there is too much uncertainty associated with the models used.

If the stress test is not done satisfactorily, the parts of the system to be analysed in more detail will have to be determined. If the stress test is either passed or failed then the intervention program, i.e., determining the resilience enhancing interventions to be executed in the near future, can be developed. If the stress test is passed, there will be no resilience enhancing interventions to be conducted.

7. DETERMINE PARTS OF SYSTEM TO BE ANALYSED IN MORE DETAIL

In this step, the parts of the system that must be analysed in more detail in the next iteration, if any, are determined. The parts that are likely to generate the most reduction in uncertainty, in the resilience estimation are selected. Care must be given here to not only select parts of the system where it is assumed that a reduction of uncertainty will increase resilience so that the stress test can be passed, i.e., the reduction of uncertainties that may decrease resilience should not be neglected. To avoid preferential selection of system parts, the uncertainties related to each part of the system need to be determined. In many cases, this will be done using expert opinion. For example, there is high uncertainty in the rainfall and in the traffic patterns that might emerge following the collapse of a bridge, but there is low uncertainty in how the bridge will behave if in contact with water of \(x \text{ m}^3 \text{/s} \) and in how long it will take to reconstruct the bridge following failure.

A list of ways to reduce this uncertainty, along with their likely benefits and costs, should be generated. This list of possibilities should include conducting in depth investigations on parts of the system, e.g., load testing bridges and running more detailed flood simulation models. The parts of the system to be analysed in more detail can then be determined taking into consideration the available resources, including both effort and time frame. If there are resource constraints, the parts of the system to be analysed in more detail should be the ones that will yield the largest reduction of uncertainty for the available resources.
REFERENCES

Ryley, T, Baumeister, S and Coulter, L. 2020. Climate change influences on aviation: A literature review. Transport Policy, 92. pp. 55-64. ISSN 0967-070X orcid.org/0000-0002-8072-2534

UNECE. 2020. Climate Change Impacts and Adaptation for Transport Networks and Nodes. Geneve

This document outlines a comprehensive framework for conducting stress tests and evaluating the resilience of transportation systems.

It is targeted at stakeholders engaged in transportation planning, risk analysis, and decision-making processes. It includes policymakers, transport authorities, engineers, and consultants, providing them with a standardized procedure to conduct stress tests and estimate the resilience of their system using both qualitative and quantitative approaches.

Moreover, the framework emphasizes the importance of addressing uncertainties and offers guidance on identifying critical system components, potential interventions, and areas for further analysis. By following this framework, transportation stakeholders can enhance their understanding of system vulnerabilities, make informed decisions, and develop effective strategies to improve the overall resilience of transport networks.

This document should be connected with other standards and guidelines on risk/resilience assessment and adaptation of transportation systems to climate change, including ISO 14090 (ISO 2019), ISO14091 (ISO 2021), BS 8631 (BSI 2021), UIC RailAdapt (UIC 2017), PIARC’s International climate change adaptation framework for road infrastructure (PIARC 2015), and PIANC’s climate change adaptation planning for ports and inland waterways (EnviCom WG 178).