

Polish Marine Spatial Plan as a tool for comprehensive assessment of the projects including offshore wind farms

28-29 MAY 2024, ROME

1ST SUBREGIONAL MEETING ON ENVIRONMENTAL ASSESSMENTS IN A TRANSBOUNDARY CONTEXT - MEDITERRANEAN SEA

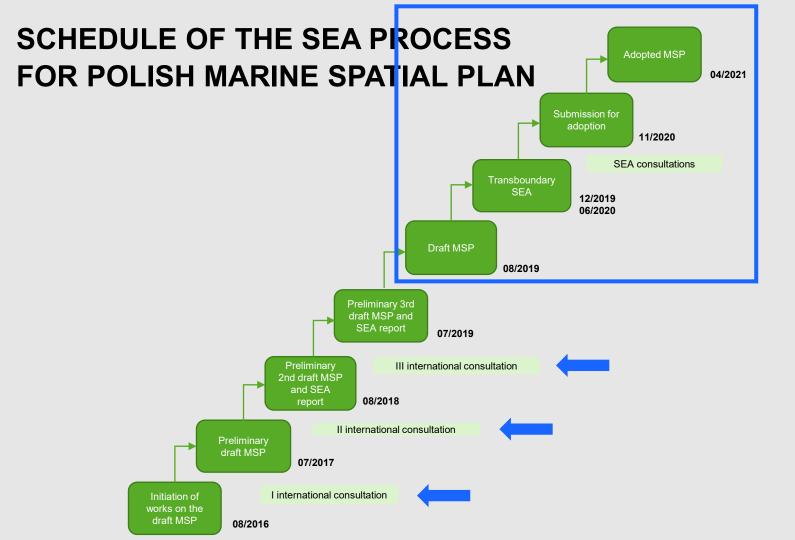
Marta Truszewska

Head of SEA and transboundary EIA/SEA Division EIA Department General Directorate for Environmental Protection marta.truszewska@qdos.gov.pl

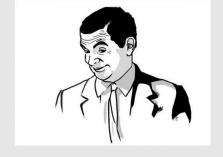
ENVIRONMENTAL IMPACT ASSESSMENT

I. Strategic environmental assessment

II. Environmental Impact Assessment of the projects


EIA in a transboundary context

REGULATIONS



- UNECE Convention on Environmental Impact Assessment in a Transboundary Context (Espoo, 1991);
- UNECE Protocol on Strategic Environmental Assessment to the Convention on Environmental Impact Assessment in a Transboundary Context (Kyiv, 2003);
- Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning;
- Directive 2001/42/EC of the European Parliament and of the Council of 27 June 2001 on the assessment of the effects of certain plans and programmes on the environment;
- Directive 2014/52/EU of the European Parliament and of the Council of 16 April 2014 amending Directive 2011/92/EU on the assessment of the effects of certain public and private projects on the environment.

BENEFITS OF THE SEA

- identification of possible significant impacts;
- identification of potential conflicts between stakeholders (also in a transboundary context e.g. OWF/fishery);
- identification of valuable nature protection areas in a transboundary context;
- identification of important relations between different environmental components;
- taking proper account of transboundary sectoral coherence (e.g. shipping routes, nature areas);
- gathering knowledge during public consultations and international meetings;
- promotion of the MSP;
- improvement of the MSP and the SEA report.

TOOLS

GENERALNA DYREKCIA OCHRONY SRODOWISKA

PROCEDURES

INTERESTS IDENTIFIED

GUIDELINES

KNOWLEDGE

DATA

IMPACTS

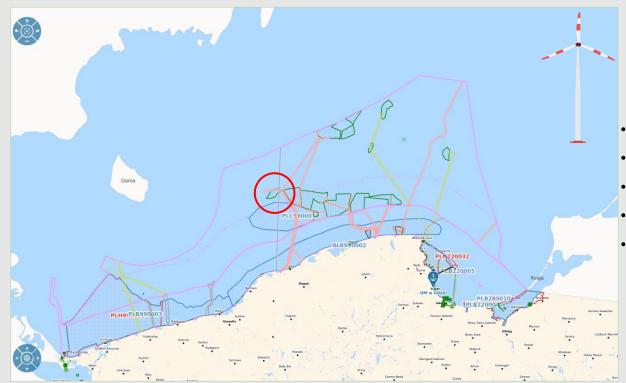
We may not have it all but together we have it all

Source: http://surl.li/tsxzt


MARINE SPATIAL PLANS COHERENCE

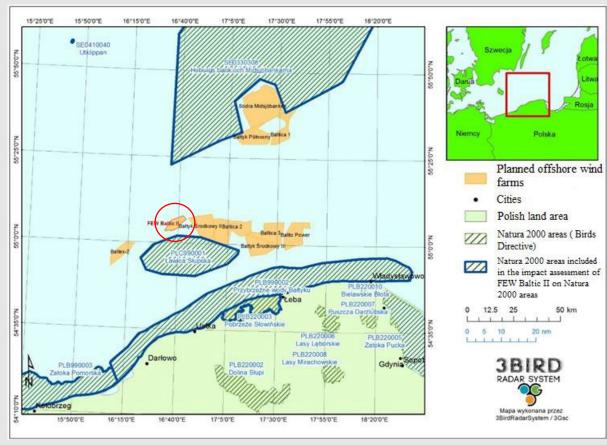
POLAND

SWEDEN


GERMANY

Source: https://sipam.gov.pl/geoportal

FEW BALTIC II



- max. 350 MW capacity
- 44 turbines
- max. 300 m total height
- max. 250 m rotor diameter
- area of approx. 27,60 sq km

Source: www.sipam.gov.pl

Cumulative impact assessment

Source: FEW BALTIC II EIA REPORT

Cumulative impact assessment

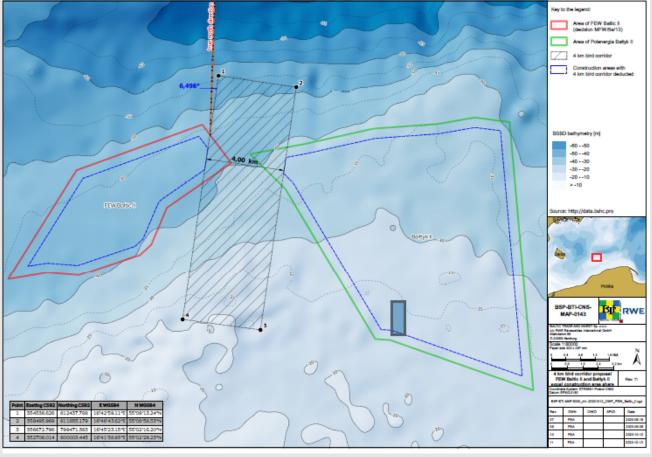
Impact of barrier effect:

- The need to modify migration routes, which generates an increase in energy expenditure – impact on condition of birds, degree of survival, breeding succes;
- The avoidance of planned OWFs complex during spring and autumn migrations and winter local passages by species protected under the Natura 2000.

Impact of collision with rotor blades:

 Increased risk of mortality during spring and autumn migration. Monitoring of migratory avifauna – spring and autumn migrations (March – May 2017, July – November 2017):

- 3Bird Radar System
- crouise observation
- night acoustic recordings


Results:

- 42 196 birds observed
- 106 species
- 18 species particularly threatened Annex 1 of the Bird Directive
- 15 species of the HELCOM Red List

Cumulative collisions significance from **small** (small birds migrating at night) to **moderate** (long-tailed duck, common scoter, little gull).

Mitigation measures

Source: FEW BALTIC II EIA REPORT

Mitigation measures in order to minimize the impact of collision risk:

- Using a temporary shutdown system for wind turbines in critical periods of intense migration;
- Maintaining a 20 m zone between the rotor blades and water surface, as the 92% of flight during spring migration took place up to 20 m;
- Painting one of the three blade rotor blades on black to minimize motion blur.
- Post-project monitoring

- To understand the overall biodiversity impacts of OWFs, cumulative impacts must be taken into account.
- It is possible to minimize negative impact of OWF project. Poorly designed wind farms can have negative direct, indirect or cumulative impact on biodiversity.
- It would be easier to estimate cumulative impacts if the environmental impact assessments in the various countries were performed with comparable endpoints.
- Individual OWF projects are subject to systemised assessment of impacts on marine ecosystems, but evaluations on a larger spatial scale and long-term assessments of OWF projects are necessary to provide a knowledge base for strategic planning

WHAT'S NEXT?

Thank you for your attention!

Marta Truszewska

Head of SEA and transboundary EIA/SEA Division EIA Department General Directorate for Environmental Protection marta.truszewska@gdos.gov.pl

GENERALNA DYREKCJA OCHRONY ŚRODOWISKA Generalna Dyrekcja Ochrony Środowiska Al. Jerozolimskie 136; 02-305 Warszawa www.gov.pl/gdos

