

Distr.: General 2 April 2024 Russian

Original: English

Европейская экономическая комиссия

Комитет по внутреннему транспорту

Всемирный форум для согласования правил в области транспортных средств

Сто девяносто третья сессия Женева, 25-28 июня 2024 года Пункты 4.15.1 и 14.4.1 предварительной повестки дня Соглашение 1958 года: Предложение по поправкам к общим резолюциям Рассмотрение АС.3 проектов ГТП ООН и/или проектов поправок к введенным ГТП ООН, если таковые представлены, и голосование по ним: предложение по поправкам к общим резолюциям по соглашениям 1958 и 1998 годов, если таковое представлено

Предложение по поправке 4 к Общей резолюции № 1

Представлено Рабочей группой по пассивной безопасности*

Воспроизведенный ниже текст был принят Рабочей группой по пассивной безопасности (GRSP) на ее семьдесят четвертой сессии (ECE/TRANS/WP.29/GRSP/74, п. 32). В его основу положен документ ECE/TRANS/WP.29/GRSP/2023/33 с поправками, содержащимися в приложении VIII к докладу. Этот текст представляется Всемирному форуму для согласования правил в области транспортных средств (WP.29) и Исполнительному комитету Соглашения 1998 года (AC.3) для рассмотрения на их сессиях в июне 2024 года.

^{*} В соответствии с программой работы Комитета по внутреннему транспорту на 2024 год, изложенной в предлагаемом бюджете по программам на 2024 год (А/78/6 (разд. 20), таблица 20.5), Всемирный форум будет разрабатывать, согласовывать и обновлять правила ООН в целях улучшения характеристик транспортных средств. Настоящий документ представлен в соответствии с этим мандатом.

Содержание изменить следующим образом:

«Содержание

Преа	мбу.	ла					
I.	Изложение технических соображений и обоснования						
	опи необ пред	сания і бходим цметов	и эк иых в обо	оция (OP.1) по соглашениям 1958 и 1998 годов, касающаяся сплуатационных качеств испытательных инструментов и устройств, для оценки соответствия колесных транспортных средств, орудования и частей техническим предписаниям, указанным глобальных технических правилах			
	1.	Обла	сть	применения			
	2.	Общі	ие п	оложения			
	3.	Конк	реті	ные положения			
Допо	лне	ние					
Доба	влен	ние 1	_	(Зарезервировано для технических требований к манекену с достоверными биофизическими характеристиками, предназначенному для испытания на удар сзади (BioRID))			
Доба	влен	ние 2	_	Технические требования к изготовлению, подготовке и сертификации антропоморфного устройства для испытания на боковой удар, представляющего собой манекен взрослого мужчины 50-го процентиля WorldSID (манекен WorldSID, мужской, 50-го процентиля)			
Доба	влен	ние 3		Технические требования к изготовлению, подготовке и сертификации ударного элемента в виде гибкой модели ноги пешехода (FlexPLI)			
Доба	влен	ние 4	_	(Зарезервировано для манекенов серии Q)			
Доба	влен	ние 5	_	Технические требования для оценки пригодности моделей человеческого тела с целью определения времени удара головы пешехода в качестве предварительного условия для использования складных систем защиты пешеходов			

І. Изложение технических соображений и обоснования

. . .

П. Общая резолюция (ОР.1) по соглашениям 1958 и 1998 годов, касающаяся описания и эксплуатационных качеств испытательных инструментов и устройств, необходимых для оценки соответствия колесных транспортных средств, предметов оборудования и частей техническим предписаниям, указанным в правилах и глобальных технических правилах

[...]

Пункты 3 и 3.1 («Конкретные положения») изменить следующим образом:

3. Конкретные положения

3.1 В нижеследующей таблице перечислены отдельные добавления к настоящей Общей резолюции, в которых содержатся подробные данные, касающиеся конструкции, изготовления, технического обслуживания и подготовки испытуемых устройств или предметов оборудования.

ECE/TRANS/WP.29/1101	Родовое название испытуемого устройства	Правила, требующие использования испытуемого устройства/ предмета оборудования	Глобальные технические правила, требующие использования испытуемого устройства или предмета оборудования	Дата принятия добавления
Поправка 3 – Добавление 1 к ОР.1	(Зарезервировано) Манекен BioRID	№ 17	№ 7	
Поправка 1 – Добавление 2 к ОР.1	Манекен WorldSID, мужской, 50-го процентиля	№ 135	№ 14	12 ноября 2014 года
Поправка 2 – Добавление 3 к ОР.1	FlexPLI	№ 127	№ 9	
Поправка – Добавление 4 к ОР.1	(Зарезервировано) Манекен серии Q			
Поправка 4 – Добавление 5 к ОР.1	МЧТ-ССЗП	№ 127	№ 9	()

».

Приложение изменить следующим образом:

«Добавление 1 — (зарезервировано для технических требований к манекену с достоверными биофизическими характеристиками, предназначенному для испытания на удар сзади (BioRID))

Добавление 2 — Технические требования к изготовлению, подготовке и сертификации антропоморфного устройства для испытания на боковой удар, представляющего собой манекен взрослого мужчины 50-го процентиля WorldSID (манекен WorldSID, мужской, 50-го процентиля)

Добавление 3 — Технические требования к изготовлению, подготовке и сертификации ударного элемента в виде гибкой модели ноги пешехода (FlexPLI)

Добавление 4 — (Зарезервировано для манекенов серии Q)

Добавление 5 — Технические требования для оценки пригодности моделей человеческого тела с целью определения времени удара головы пешехода в качестве предварительного условия для использования складных систем защиты пешеходов».

«Дополнение

Добавление 5 — Технические требования для оценки пригодности моделей человеческого тела с целью определения времени удара головы пешехода в качестве предварительного условия для использования складных систем защиты пешеходов

Содержание

Cmp. 1. Общие положения 2. Процедура оценки пригодности и контрольные результаты 3. Документирование результатов Приложения Системы координат..... A. B. Справочная информация: валидация эталонных моделей человеческого тела..... C. Модели базовых транспортных средств Дополнение С1 Список файлов моделей базовых транспортных средств, доступный на веб-сайте ЕЭК Дополнение С2 Вспомогательные файлы для моделей базовых транспортных средств, доступные на веб-сайте ЕЭК.....

1. Общие положения

В настоящем добавлении изложены технические требования к моделям человеческого тела (МЧТ), относящимся к процедуре определения времени удара головы (ВУГ), описанной в приложении 2 к ГТП № 9. В настоящем добавлении представлена процедура оценки пригодности МЧТ и указаны все связанные с ней инструменты в соответствии с требованиями приложения 1 к ГТП № 9.

Добавление 5 к ОР.1 МЧТ Модель БТС Моделирование для оценки пригодности МЧТ Документация (раздел 3) Нет Требования к прохождению Да Нет* Запрошено статическое испытание Да * Например подушка безопасности Модель ТС Приложение 2 к ГТП № 9 Моделирование для определения ВУГ_р с раскрытой ССЗП (40км/ч) График ВУГ_р/WAD Да ВУГ_р > OBĈ Нет Моделирование для определения ВУГ с с нераскрытой ССЗП ($\overline{40}$ км/ч) График ВУГ_c/WAD Пригодна для Испытание без для динамических статических задействования испытаний испытаний СС3П

Рис. 1.1 Блок-схема взаимосвязи приложения 2 к ГТП № 9 ООН и настоящим добавлением к OP.1

1.1 Ограничения

Процедура оценки пригодности, описанная в настоящем тексте, является упрощенной и поэтому ограничена целями расчета времени удара головы (ВУГ) пешехода и дуги охвата (WAD); следовательно, она не пригодна для квалификационной оценки степени травмирования в рамках настоящих или любых других предписаний, касающихся аварийной ударобезопасности. Процедурой оценки пригодности охватываются только те действия, которые относятся к указанным целям и были определены в ходе исследований чувствительности и межлабораторного моделирования.

1.2 Определения

В настоящем добавлении используются нижеследующие определения.

- 1.2.1 Под "моделью человеческого тела" (МЧТ) подразумевается виртуальная геометрическая и механическая имитация человеческого тела, в которой учитывается анатомия человека. Процедура, описанная в настоящем приложении, относится к МЧТ, используемым для моделирования наезда на пешехода. Модели пешеходов, необходимые в силу приложения 2 к ГТП № 9, отбирают из следующего ростового диапазона: шестилетний ребенок (6-л Р), женщина с характеристиками 5-го процентиля (5-го Ж), мужчина с характеристиками 95-го процентиля (50-го М) и мужчина с характеристиками 95-го процентиля (95-го М).
- 1.2.2 "Модели базовых транспортных средств" (БТС) это типовые копии передних частей автомобилей, относящихся к трем категориям транспортных средств: семейные автомобили (САМ), автомобили с кузовом типа "родстер" (АКР) и автомобили спортивно-хозяйственного назначения (АСХН). (Было установлено, что форма типового многоцелевого транспортного средства (МЦТС) находится между формой типового САМ и типового АСХН, а значит уже охвачена.) Модели транспортных средств отражают типовые формы выбранных категорий транспортных средств, а также средние параметры реакции конструкции при наезде на пешехода в части зависимости деформации от силы; они моделируются из расчета обеспечения их надежности и переносимости характеристик на все учитываемые конкретные коды конечных элементов (КЭ).
- 1.2.3 "Моделирование пригодности МЧТ": метод компьютерного моделирования (МЧТ в зависимости от модели БТС), направленный на представление доказательств того, что моделирование с использованием конкретной МЧТ сопоставимо с моделированием эталонных процессов и обеспечивает получение непротиворечивых результатов, в частности по ВУГ и WAD. Моделирование эталонных процессов основано на моделях, прошли валидацию по итогам сопоставления смоделированных реакций с результатами испытаний с использованием анатомического материала. Другой целью является подтверждение того, что модели дают сопоставимые результаты в различной аппаратной или программной среде, если они применяются для конкретной цели.
- 1.2.4 "Моделирование для определения ВУГ": метод компьютерного моделирования, направленный на определение ВУГ в зависимости от WAD применительно к модели транспортного средства, оснащенного ССЗП, с целью установления условий испытания для оценки складных систем, указанных в приложении 2 к ГТП № 9.

2. Процедура оценки пригодности и контрольные результаты

- 2.1 Предварительная подготовка моделей человеческого тела
- 2.1.1 Обувь

На МЧТ может быть надета пара обуви с толщиной подошвы (в области пятки) от 20 до 30 мм.

2.1.2 Установка в заданном положении

Изготовитель автомобиля может по собственному усмотрению выбирать инструмент для установки в заданное положение. Такая установка может быть выполнена путем предварительного моделирования (вытяжение/вдавление конечностей МЧТ до нужного положения) либо путем изменения зацепления/формы. Целевое положение модели 50-го М

указано в таблице 2-1. Модели всех остальных размеров должны соответствовать требуемому исходному положению тела, определенному в таблице 2-2. Углы измеряют с помощью оси координат, определение которой приводится в приложении А. Контрольные показатели для моделей других размеров приведены в таблице 2-2.

Правая сторона в направлении визирования/движения МЧТ определяется как сторона удара. Направление z определяется как вертикальная ось с положительными значениями, откладываемыми в направлении вниз. Локальная ось х МЧТ — это ось фронтальной плоскости, направленная вперед. (В идеале обе подошвы обуви должны касаться земли — если значение высоты вертлужных впадин (ЦВz) (см. таблицу 2-1) не может быть достигнуто при соприкосновении с землей, допускается смещение МЧТ по оси z.)

Ни одна из конечностей, т. е. рук/ног, не должна быть искусственно соединена, связана с другой частью тела или прикреплена к ней (в частности, не допускаются соединенные запястья). На МЧТ действует поле ускорений в вертикальном направлении, представляющее собой гравитационную нагрузку, служащую для целей оценки пригодности МЧТ и моделирования с целью определения ВУГ.

Таблица 2-1 Исходное положение 50-го М

Сокращение	Единица измерения	Контрольное значение 50-го М	Допустимые отклонения (±)
Px	Межпяточное расстояние продольное	310 мм	5,0 %
Py	Межпяточное расстояние боковое	185 мм	15,0 %
ЦВz	Высота ЦВ относительно уровня земли	949 мм	2,0 %
K	Угол наклона верхней части правой ноги (по оси Y относительно горизонтали)	89°	5°
L	Угол наклона верхней части левой ноги (по оси Y относительно горизонтали)	106°	5°
G	Угол сгибания правого колена (Ү)	164°	5°
Н	Угол сгибания левого колена (Ү)	175°	5°
Ту	Угол наклона верхней части правой руки (по оси Y относительно горизонтали)	98°	5°
Uy	Угол наклона верхней части левой руки (по оси Y относительно горизонтали)	70°	5°
Tx	Угол наклона верхней части правой руки (по оси X относительно горизонтали)	100°	10°
Ux	Угол наклона верхней части левой руки (по оси X относительно горизонтали)	100°	10°
V	Угол сгибания правого локтя	140°	5°
W	Угол сгибания левого локтя	160°	10°
ЦГх	Положение ЦГ относительно ЦВ по оси х	44 мм	15 мм
ЦГz	Высота ЦГ относительно уровня земли	1686 мм	1,5 %
M	Масса тела	76,7 кг	-5 %/+10 %

Рис. 2-1 Показатели, описывающие исходное положение МЧТ. Все сокращения и описание контрольных точек (ЦГ, ЦВ и т. д.) см. в приложении А.

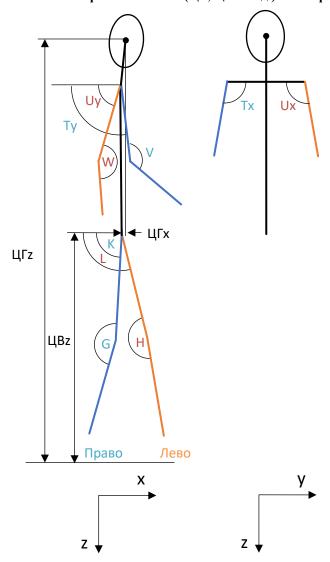


Таблица 2-2 Контрольное положение тела для моделей пешеходов других размеров

		Контрольное значение	Контрольное значение	Контрольное значение	Допуск
Сокращение	Единица	6-л Р	5-го Ж	95-го М	(±)
Px	MM	199	243	340	5,0 %
Py	MM	152	164	265	15,0 %
ЦВz	MM	613	831	1043	2,0 %
K	0	89°	89°	89°	5°
L	0	106°	106°	106°	5°
G	0	164°	164°	164°	5°
Н	0	175°	175°	175°	5°
Ty	0	98°	98°	98°	5°
Uy	0	70°	70°	70°	5°
Tx	0	100°	100°	100°	10°
Ux	0	100°	100°	100°	10°
V	0	140°	140°	140°	5°
W	0	160°	160°	160°	10°
ЦГх	MM	6,5	27	16	15 мм
ЦΓz	MM	1100	1468	1836	1,5 %
M	ΚΓ	22,8	46,9	102,6	-5 %/+10 %

2.1.3 Выходные параметры

МЧТ должна быть оснащена "датчиками" и другими выходными устройствами, которые позволяют отслеживать траектории движения выбранных частей тела.

Для ЦГ и ЦВ выходными данными должна быть хронология перемещения узлов. Выходные значения должны быть представлены в глобальной системе координат, где ось х ориентирована параллельно продольной оси транспортного средства в направлении движения, а ось z — параллельно вертикальной оси транспортного средства в направлении вверх. Датчик, который использовался для определения геометрического центра, должен быть завязан на конструкцию (не менее 10 узлов кортикального вещества кости для МЧТ со скелетом и все соответствующие органы для МЧТ без скелета).

2.2 Моделирование удара

Согласно таблицам 2-3, 2-4 и 2-5, МЧТ должна соударяться с моделями БТС, определенными в пункте 1.2.2, при трех различных скоростях удара (30 км/ч, 40 км/ч и 50 км/ч). Время моделирования должно превышать ожидаемое время удара головы.

Статический и динамический коэффициент трения между автомобилем и МЧТ принимают равным 0,3.

Центр тяжести (ЦТ) головы МЧТ должен быть расположен на одной прямой с осевой линией транспортного средства (y=0 в глобальной системе координат).

2.3 Требования к выходным данным

Необходимо подтвердить, что в результате каждого процесса моделирования были получены следующие выходные данные:

графики динамики для:

- а) координат х и z ЦГ и ЦВ в глобальной системе координат;
- b) смещения ЦТ транспортного средства по оси х в глобальной системе координат;
- с) результирующего ускорения ЦГ;
- d) усилий соприкосновения (между транспортным средством и МЧТ без верхних конечностей, транспортным средством и головой МЧТ, а также совокупного усилия соприкосновения);
- е) совокупной энергии в режиме "песочных часов" и совокупной внутренней энергии всей установки;
- f) увеличения массы,

причем все графики строятся с шагом 0,1 мс.

Кроме того, с выходным интервалом 1 мс формируется анимированная визуализация результатов моделирования.

2.4 Проверки качества

Проводят следующие проверки качества:

- усилие соприкосновения (между МЧТ и транспортным средством)
 в начале моделирования равно нулю;
- b) совокупная энергия остается постоянной в пределах 15-процентного допуска;
- с) энергия в режиме "песочных часов" ≤10 % совокупной энергии;
- d) искусственное увеличение массы составляет менее 3 %.

2.5 Расчет времени удара головы

Время первого касания определяется как первый момент, когда усилие соприкосновения уже не равно 0.

Время удара головы (ВУГ) определяется как время, прошедшее с момента первого касания МЧТ (за исключением предплечий и кистей рук) наружной поверхности транспортного средства до момента первого соприкосновения его головы с наружной поверхностью транспортного средства.

Если этот метод по какой-либо причине неприменим, то применяют и документируют соответствующий альтернативный метод.

2.6 Контрольные результаты моделирования для целей оценки пригодности

По итогам моделирования для целей оценки пригодности с использованием моделей БТС значения ВУГ и расположение ЦГ в момент удара головы сопоставляются с контрольными данными, приведенными в таблицах 2-3, 2-4 и 2-5.

Эти таблицы были составлены по результатам моделирования с использованием валидированных МЧТ согласно добавлению 5 к Общей резолюции № 1 (OP.1) по соглашениям 1958 и 1998 годов, ECE/TRANS/WP.29/1101.

Траектории измеряют относительно модели БТС, т. е. величину смещения модели БТС по оси х необходимо вычесть из измеренной координаты ЦГх на оси х в глобальной системе координат. Для ЦГz используются глобальные координаты на оси z.

95-го M не нуждается в отдельной оценке пригодности. Все модели 95-го M, которые допускается использовать, являются производными от моделей 50-го M, поэтому 95-го M должен соответствовать исключительно требованиям в отношении установки в заданное

положение, тогда как в специальном моделировании для целей оценки пригодности нет необходимости.

Таблица 2-3 **Контрольные результаты для 50-го М**

Форма модели БТС	Скорость (км/ч)	ВУГ (мс)		ЦГх (мм)		ЦГг (мм)	
		мин.	макс.	мин.	макс.	мин.	макс.
CAM	30	152	197	-1438	-1005	1019	1117
	40	127	150	-1489	-1105	1006	1158
	50	107	121	-1504	-1179	1024	1169
AKP	30	163	199	-1574	-1104	931	1125
	40	133	156	-1659	-1191	931	1178
	50	112	127	-1665	-1283	981	1183
ACXH	30	127	144	-1000	-624	1092	1193
	40	101	116	-1032	-737	1103	1187
	50	86	99	-1110	-799	1109	1191

Таблица 2-4 Контрольные результаты для 6-л Р

Форма модели БТС	Скорость (км/ч)	ВУГ (мс)		ЦГх (мм)		ЦГг (мм)	
		мин.	макс.	мин.	макс.	мин.	макс.
CAM	30	60	78	-388	-325	912	936
	40	49	60	-428	-358	907	949
	50	43	49	-459	-387	891	968
AKP	30	66	80	-480	-362	857	913
	40	53	61	-496	-409	851	924
	50	45	52	-525	-449	848	930
ACXH	30	35	50	-154	-101	1011	1032
	40	28	38	-183	-139	1024	1050
	50	19	34	-227	-156	1027	1090

Таблица 2-5 Контрольные результаты для 5-го Ж

Форма модели БТС	Скорость (км/ч)	ВУГ (мс)		ЦГх (мм)		ЦГг (мм)	
		мин.	макс.	мин.	макс.	мин.	макс.
ACXH	30	90	102	-622	-447	1042	1133
	40	69	82	-679	-496	1046	1126
	50	59	70	-736	-527	1048	1127

3. Документирование результатов

3.1 Общие положения

Документироваться должна следующая информация:

- а) дата протокола;
- b) наименование изготовителя автомобиля;

- с) тип и версия программного обеспечения (наименование пакета программ по КЭ, пересмотр и версия);
- d) наименование и версия МЧТ;
- е) версия применяемых моделей БТС.

К протоколу дополнительно приобщают изображения пешехода (вид спереди и вид сбоку) в момент t0 и в момент удара головы.

3.2 Проверки качества

Для всех процессов моделирования заполняется таблица 3-1.

Таблица 3-1 **Проверки качества**

Критерии оценки в целях проверки	Допустимое значение	Фактическое значение	Соответствие?
Коэффициент трения между моделью БТС и МЧТ	0,3		Да/Нет
Центр тяжести головы расположен на осевой линии автомобиля	Y=0 мм		Да/Нет
Усилие соприкосновения между МЧТ и транспортным средством в начале моделирования	0		Да/Нет
Изменение совокупной энергии в ходе моделирования	≤15 %		Да/Нет
Доля энергии в режиме "песочных часов" относительно совокупной энергии	≤10 %		Да/Нет
Искусственное увеличение массы относительно общей массы установки	≤3 %		Да/Нет

3.3 Исходное положение тела для модели пешехода

Для подтверждения пригодности той или иной ростовой группы МЧТ необходимо заполнить нижеследующую таблицу 3-2, используя контрольные значения из таблиц 2-1 и 2-2.

Таблица 3-2 **Проверка исходного положения тела**

Сокращение	Единица	Измеренная величина (для роста)	Отклонение от контрольного значения	Допуск	Соответствие?
Px	MM			5,0 %	Да/Нет
Py	MM			15,0 %	
ЦВz	MM			2,0 %	
K	0			5°	
L	0			5°	
G	0			5°	
Н	٥			5°	
Ту	0			5°	
Uy	0			5°	
Tx	0			10°	
Ux	0			10°	
V	0			5°	
W	0			10°	

Сокращение	Единица	Измеренная величина (для роста)	Отклонение от контрольного значения	Допуск	Соответствие?
ЦГх	MM			15 мм	
ЦΓz	MM			1,5%	
Масса тела	КГ			-5 % +10 %	

3.4 Результаты моделирования для целей квалификации

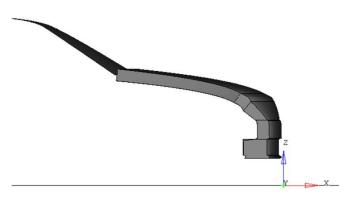
Для квалификации МЧТ конкретного роста надлежит заполнить нижеследующую таблицу 3-3, указав все формы моделей БТС и все скорости столкновения с учетом контрольных значений, приведенных в таблицах 2-3, 2-4 или 2-5 соответственно. Для соответствия требованиям параметры соответствующей МЧТ должны находиться в пределах минимальных/максимальных значений, указанных в таблицах 2-3, 2-4 и 2-5.

Таблица 3-3 Результаты моделирования для целей квалификации

Форма модели БТС	Скорость (км/ч)	BV	Г (мс)	ЦП	·x (мм)	ЦГ	'z (мм)
		Измеренные	Соответствие?	Измеренные	Соответствие?	Измеренные	Соответствие?
CAM	30						
	40						
	50						
AKP	30						
	40						
	50						
ACXH	30						
	40						
	50						

По каждому процессу моделирования в документацию включают следующие диаграммы:

- а) ЦВх и ЦГх в зависимости от времени;
- b) ЦВz и ЦГz в зависимости от времени;
- с) ЦГ в зависимости от ЦГх и ЦВ в зависимости от ЦВх;
- d) совокупное усилие соприкосновения между МЧТ и моделью БТС в зависимости от времени;
- е) общая, кинетическая, внутренняя энергия и энергия в режиме "песочных часов" в зависимости от времени.


Приложение А — Системы координат

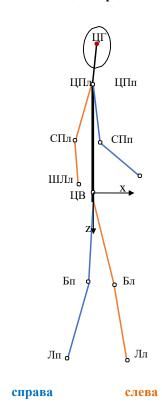
1. Глобальная система координат

Глобальная система координат определяется, как показано на рис. А.1:

- направление X это направление движения транспортного средства (продольная ось), причем X=0 в крайней передней точке транспортного средства в момент времени t=0;
- b) направление Y поперечная ось транспортного средства, причем Y=0 на осевой линии транспортного средства;
- с) направление Z параллельно вертикальной оси транспортного средства, ориентированной вверх, причем Z=0 на уровне земли.

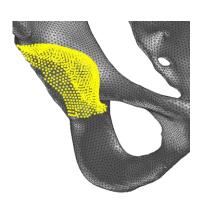
Рис. А.1 Глобальная система координат

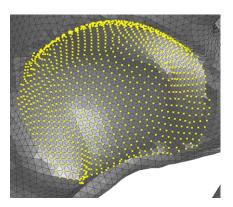
Примечание: все имеющиеся согласно добавлению 4 к Общей резолюции № 1 (OP.1) по соглашениям 1958 и 1998 годов (ECE/TRANS/WP.29/1101) модели БТС уже имеют правильное расположение — никакой доводки транспортного средства не требуется.


2. Ось координат для моделей человеческого тела

Опорная система координат МЧТ определяется следующим образом: локальная ось х МЧТ относится к сагиттальной плоскости и направлена вперед. Ось у — это ось, относящаяся к коронарной плоскости и направленная вправо от МЧТ, тогда как направление z определяется как векторное произведение вышеупомянутых осей и представляет собой вертикальную ось, ориентированную книзу.

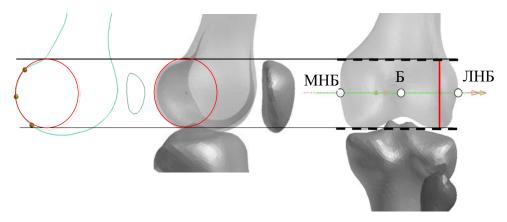
Локальные оси, определяющие исходное положение тела, и соответствующие ориентиры показаны на рис. А.2 (строчная буква "п" означает правую сторону тела, а "л" — левую).


3. Модели человеческого тела со скелетом


Рис. А.2 Локальные оси МЧТ для определения углов

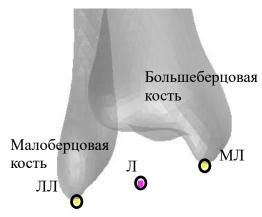
- а) Центр тяжести муляжа головы (далее ЦГ) определяется как центр массы всех частей черепа, кожи головы, лица, головного мозга и внутричерепного пространства. Он подсоединяется ко всем узлам внутренней части черепной коробки для динамического учета выходных данных.
- b) ЦВ определяется как геометрическая середина прямой, соединяющей центры правой и левой вертлужных впадин. Геометрический центр всех узлов в пределах вогнутой поверхности каждой вертлужной впадины должен определяться как усредненная координата всех узлов на поверхности тазовой кости в пределах границ, относящихся к острому краю, в области которого кость меняет свою кривизну, как показано на рис. А.З. Надлежит определить центры левой и правой вертлужных впадин. Срединной точкой между левой и правой вертлужными впадинами является ЦВ, который необходимо подсоединить ко всем узлам правой и левой вертлужных впадин.

Рис. А.3 Определение центра вертлужных впадин (все узлы вплоть до острого края, в области которого кость меняет кривизну)



- с) Угол бедра определяется как угол относительно оси Y между референтной осью бедренной кости и горизонталью.
- d) Референтная ось бедренной кости определяется как прямая, соединяющая центр узлов вертлужной впадины и срединную точку (Б) между медиальным надмыщелком бедренной кости (МНБ) и латеральным надмыщелком бедренной кости (ЛНБ). Если МНБ и ЛНБ не могут быть четко отделены от структуры кости, то можно применить подход, указанный на рис. А.З. В рамках этого подхода модель бедренной кости должна быть расположена таким образом, чтобы латеральный и медиальный надмыщелки максимально перекрывались, как показано на левом изображении рис. А.4. Затем по контуру мыщелка бедренной кости формируется цилиндр. За МНБ и ЛНБ принимают точки пересечения оси продольного цилиндра, проходящей вдоль мыщелка бедренной кости, и наружной поверхности кости. Такая точка должна быть определена на левой (Бл) и правой (Бп) бедренных костях МЧТ.

e)


Рис. А.4 Построение ЛНБ и МНБ

f) Угол сгибания коленного сустава определяется как угол между референтной осью бедренной кости и прямой, соединяющей срединную точку линии надмыщелков бедренных костей с межлодыжечной точкой (Л), расположенной на середине прямой между вершиной медиальной лодыжки (МЛ) большеберцовой кости и вершиной латеральной лодыжки (ЛЛ) малоберцовой

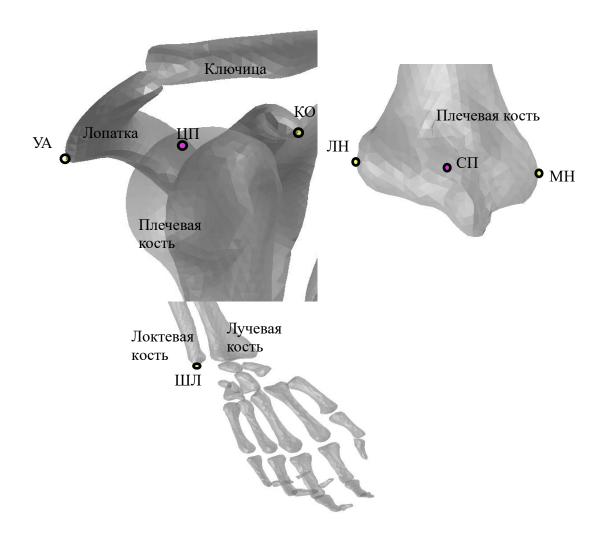

кости, как показано на рис. А.5. Эти точки должны быть определены на левой (Лл) и правой (Лп) сторонах МЧТ.

Рис. А.5 Правая межлодыжечная точка (Л), расположенная посередине между МЛ и ЛЛ

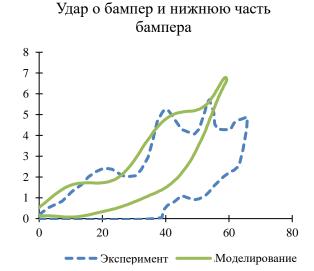
- g) Угол плеча определяется как угол относительно оси Y между горизонтальной плоскостью и референтной осью плечевой кости. Референтная ось плечевой кости определяется как прямая, соединяющая референтную точку плечевого сустава (ЦП) и референтную точку плечевой кости (СП). ЦП определяется как середина проходящей по лопатке прямой между самой латеродорсальной точкой угла акромиона (УА) и самой вентральной точкой клювовидного отростка лопатки (КО). СП определяется как середина прямой, соединяющей самую каудально-латеральную точку латерального надмыщелка (ЛН) и самую каудально-медиальную точку медиального надмыщелка (МН). Эти точки должны быть определены на левой (ЦПл, СПл) и правой (ЦПп, СПп) сторонах МЧТ (рис. А.6).
- h) Угол сгибания локтевого сустава определяется как угол между референтной осью плечевой кости и прямой, соединяющей СП и самую каудально-медиальную точку шиловидного отростка локтевой кости (ШЛ). Эта ось должна быть определена на левой (СПл, ШЛл) и правой (СПп, ШЛп) сторонах МЧТ.

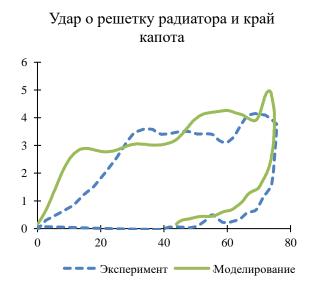
Рис. А.6 Анатомические ориентиры верхних конечностей

i) Межпяточное расстояние определяется как расстояние между центральными точками всех узлов правой и левой пяточных костей. Если его определить невозможно, то надлежит использовать расстояние между самым задним узлом левой пятки и самым задним узлом правой пятки на подошве обуви.

4. Модели человеческого тела без скелета

Во всех случаях, когда указанные в предыдущем разделе ориентиры МЧТ не могут быть установлены, используют точки, определение которых приведено в таблице 2-10.


Таблица 2-10 Контрольные узлы, используемые для определения исходного положения МЧТ, для которой невозможно определить анатомические ориентиры


МЧТ с полным скелетом	МЧТ без скелета
П	Центр тяжести органа/органов, составляющих полную модель головы
ЦПл/ЦПп	Геометрический центр плечевого сустава, соединяющего грудную клетку с органом, имитирующим плечо
СПл/СПп	Геометрический центр локтевого сустава, который соединяет орган, имитирующий плечо, с органом, имитирующим предплечье
ШЛл/ШЛп	Геометрический центр лучезапястного сустава, который соединяет орган, имитирующий кисть руки, с органом, имитирующим предплечье (с задней стороны/стороны мизинца)
ЦВ	Геометрический центр тазобедренного сустава, который соединяет орган, имитирующий таз, с органом, имитирующим бедро
Бп/Бл	Геометрический центр коленного сустава, который соединяет орган, имитирующий бедро, с органом, имитирующим голень
Лп/Лл	Геометрический центр голеностопного сустава, который соединяет орган, имитирующий стопу, с органом, имитирующим кости голени

Приложение В — Справочная информация: валидация эталонных моделей человеческого тела

- 1.1 Эталонные МЧТ валидируются согласованным образом. Данная информация является справочной и направлена на разъяснение сути валидации. Повторная валидация пользователями для целей оценки пригодности МЧТ не требуется.
- 1.2 В данном разделе содержится описание процесса валидации эталонных МЧТ типа "50-го М", которые использовались для установления коридора пригодных значений, согласно пункту 2.6 настоящего добавления ("Контрольные результаты моделирования для целей оценки пригодности").
- 1.3 В процедуре валидации, в отличие от моделирования для целей оценки пригодности, описан процесс определения степени отображения кинематики движения пешехода эталонными моделями во время реальных столкновений.
- 1.4 Для валидации отдельных МЧТ они должны были пройти согласованную процедуру. Процедура заключалась в моделировании движения МЧТ относительно модели, представляющей типовую переднюю часть транспортного средства (макет SAE^{1, 2}), используемую в экспериментах с анатомическим материалом³. Имитационная модель "макет SAE²" прошла валидацию путем сопоставления ее реакций с ранее опубликованными результатами испытаний с использованием ударных элементов и аппаратного варианта "макета SAE¹", как показано на рис. В.1.

Рис. В.1 Реакции ударных элементов "макетов SAE", используемых для валидации МЧТ

¹ Разработка и валидация компонентов типового макета передней части транспортного средства для целей оценки столкновения с пешеходом. Материалы Конференции ИРКОБИ 2014 года: http://www.ircobi.org/wordpress/downloads/irc14/pdf_files/82.pdf.

² Имитационные модели "макет SAE": https://doi.org/10.5281/zenodo.7870181.

Коридоры биодостоверности при соударении всего тела пешехода с типовым макетом. Материалы Конференции ИРКОБИ 2015 года: http://www.ircobi.org/wordpress/downloads/irc15/pdf_files/49.pdf.

- 1.5 МЧТ Реакции сравнивались c соизмеримыми коридорами, установленными в результате трех испытаний с использованием анатомического материала. Применяемая процедура валидации моделей, которые использовались для установления коридоров пригодных значений, ограничена целями расчета времени удара головы (ВУГ) пешехода и дуги охвата (WAD). Она не подходит для квалификационной оценки степени травмирования в рамках ГТП № 9 ООН или любых других правил, касающихся аварийной ударобезопасности. Если МЧТ предназначены для широкого использования, то требуется расширенная валидация.
- 1.6 Для валидации той модели, которая используется для моделирования в целях оценки пригодности, положение МЧТ не приводилось в соответствие с испытаниями на анатомическом материале³, однако соответствовало таблице 2-1 приложения 2. Основное различие между положениями, применяемыми в ходе испытаний на анатомическом материале³ и установленными согласно таблице 2-1 приложения 2, заключается в положении рук (поскольку положение ног анатомического материала и предлагаемое положение ног МЧТ соответствуют целевым показателям стандарта SAE J2782⁴ и, следовательно, сопоставимы). Согласно результатам предшествующих исследований, положение рук изменяет ВУГ примерно на ±3 мс⁵, а это значение меньше диапазона результатов, полученных при исследовании на анатомическом материале³.
- 1.7 По отношению к "макету SAE" МЧТ располагались вертикально таким образом, чтобы центр тяжести вертлужной впадины (ЦВ) (согласно рис. А.3 приложения 2) находился на высоте 932 мм. (С учетом смещения между точкой "Н" и контрольной точкой на тазе, используемой для отслеживания согласно стандарту SAE J27824, указанное в результатах экспериментов с анатомическим материалом положение контрольной точки на тазе было смещено на 73 мм для преобразования в положение ЦВ. Во избежание противоречий с требованиями в отношении центра тяжести головы (ЦГ) в исходном положении, согласно таблице 2-1 настоящего добавления, принималось минимальное значение контрольной точки на тазе в пределах заявленного коридора.) Для бокового положения точка ЦГ находилась на одной прямой с осевой линией транспортного средства.
- 1.8 Уровень земли при моделировании не учитывался. Применялась сила тяжести, а МЧТ устанавливали как можно ближе к модели транспортного средства. Модель транспортного средства "макет SAE" двигалась навстречу МЧТ с начальной скоростью 40 км/ч. Использовались настройки соприкосновения, аналогичные установленным в пункте 2.2 настоящего добавления (т. е. статический и динамический коэффициент трения между автомобилем и МЧТ устанавливался равным 0,3).

⁴ Технические требования к испытательному манекену пешехода мужского пола среднего размера: https://doi.org/10.4271/J2782_201911.

⁵ Разработка процедуры сравнения кинематики моделей человеческого тела для целей моделирования движения пешеходов. Материалы Конференции ИРКОБИ 2017 года: http://www.ircobi.org/wordpress/downloads/irc17/pdf-files/64.pdf.

1.9 Генерировались И анализировались все выходные перечисленные в пункте 2.3. По результатам моделирования в соответствии с пунктом 2.5 настоящего добавления рассчитывалось ВУГ. Все эталонные МЧТ соответствовали критериям, установленным в таблице В.1 на основе соизмеримых коридоров, определенных в ходе испытаний на анатомическом материале³ (и преобразованных в систему координат, указанную на рис. А.1), а также прошли все проверки качества, определенные в пункте 2.4 настоящего добавления. Для расчета ΔЦГх значение ЦГх смещалось к его значению в момент первоначального соприкосновения с транспортным средством в целях согласования с результатами испытаний на анатомическом материале³. За значение ВУГ принималось среднее значение по результатам испытаний на анатомическом материале³ с добавлением допуска +5/-10 % (соответствует допуску, определенному для траекторий в стандарте SAEJ2782⁴).

Таблица В.1 Валидация МЧТ типа "50-го М"

	ВУІ	' (мс)	ΔЦГх	: (мм)	ЦГг (мм)	
	мин.	макс.	мин.	макс.	мин.	макс.
Контрольные значения по результатам испытаний на анатомическом материале	117	159	-1653	-1402	1020	1271
GHBMC M50-PS v5.3.4 LS-DYNA MPP R10.2	136,6		-1492		1160	
GHBMC M50-PS v1.5 Radioss 2019.2.5	139,4		-1614		1181	
GHBMC M50-PS v5.33 R1.09 VPS 2019.0.4	130,3		-1500		1186	
GHBMC M50-P v5.3.4 LS-DYNA MPP R10.2	140,7		-1503		1182	
JAMA pedestrian_AM50 ver6.2.1. LS-Dyna MPP R10.0	141,9		-1586		1191	
THUMS v4.02 TB024 (05/22) LS-Dyna MPP R9.3	141,6		-1622		1223	
THUMS v4.02 (licensed) LS-Dyna MPP R12	140,5		-1609		1224	
THUMS v4.02 VWG006.2 Aud165VH VPS 2020.54	13	5,6	-1:	574	12	.19

1.10 Для остальных ростовых параметров эталонных испытаний на анатомическом материале не проводилось. При определении коридоров, указанных в таблицах 2-4 и 2-5 настоящего добавления, использовались следующие эталонные МЧТ.

Таблица В.2 Эталонные модели типов "6-л Р" и "5-го Ж"

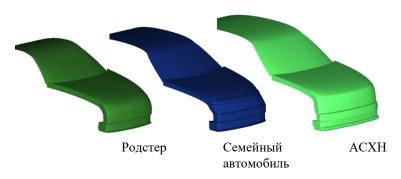
5-го Ж	6-л Р
GHBMC F05-PS v5.3.4 LS-DYNA MPP R10.2	GHBMC 6YO-PS v2.8.1 LS-DYNA MPP R10.2
GHBMC F05-PS v1.6 Radioss 2019.2.5	GHBMC 6YO-PS v2.4-scale Radioss 2019.2.5
GHBMC F05-PS V1.6 R1.09 VPS 2019.0.4	GHBMC C6YO-PS v2.43 R1.11 VPS 2019.0.4
GHBMC F05-P v5.3.4 LS-DYNA MPP R10.2	JAMA pedestrian_6YO ver6.2.1. LS-Dyna MPP R10.0

5-го Ж	6-л Р
JAMA pedestrian_AF05 ver6.2.1. LS-Dyna MPP R10.0	THUMS v4.02 TB024 (05/22) LS-Dyna MPP R9.3
THUMS v4.02 TB024 (05/22) LS-Dyna MPP R9.3	THUMS v4 (licensed with mass adjustment) LS- Dyna R12
THUMS v4.00 VWG003 Aud080VF VPS 2020.54	PIPER v00.08 PIPEpA100V6 VPS 2020.54
THUMS v4 (licensed) LS-Dyna MPP R12	PIPER v1.0.2 LS-Dyna MPP R12

Приложение С — Модели базовых транспортных средств

1. Общие положения

- 1.1 В настоящем приложении приведены технические требования к моделям БТС, используемых в рамках оценки пригодности моделей пешеходов для определения ВУГ. Указаны типы моделей и особенности их использования.
- 1.2 С перечнем моделей БТС можно ознакомиться на веб-сайте ЕЭК ООН. В настоящей поправке приводится общая информация об их использовании и документируются данные об их структуре и свойствах.

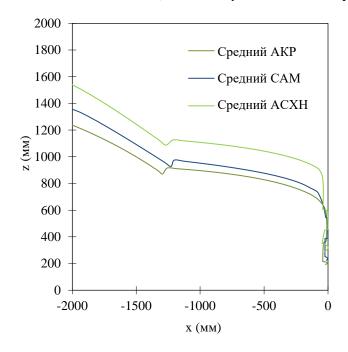

2. Руководство пользователя

- 2.1 Типы моделей БТС
- 2.1.1 Модели БТС доступны в трех различных кодах конечных элементов (КЭ), используемых для моделирования ССЗП:
 - LS-Dyna (Ansys);
 - RADIOSS (Altair);
 - VPS (ESI).

В отношении всех кодов применялся согласованный подход. Следует загрузить пакет, соответствующий коду КЭ, который планируется использовать. Перечень всех файлов с моделями БТС приведен в дополнении С1.

- 2.1.2 Существует три различные формы БТС (показаны на рис. С.1), причем в рамках процедуры оценки пригодности МЧТ необходимо учитывать все три формы:
 - семейный автомобиль (САМ),
 - родстер (АКР);
 - и спортивно-утилитарный автомобиль (АСХН).

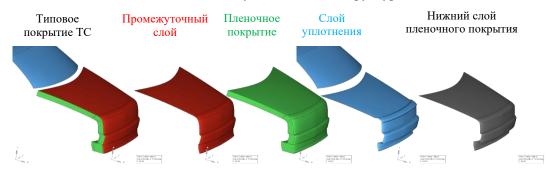
Рис. С.1 Формы моделей БТС


- 2.1.3 Модели БТС существуют в двух разных системах единиц измерения, поэтому модель следует выбирать в соответствии с системой единиц измерения, применяемой на протяжении всей процедуры:
 - миллиметры, килограммы, миллисекунды (мм кг мс);
 - миллиметры, тонны, секунды (мм_т_с).

2.2 Вместе с моделями предоставляются вспомогательные файлы, перечисленные в приложении С2 и предназначенные для использования в рамках моделей БТС. Эти файлы представляют собой лишь шаблоны, и поэтому пользователь должен выполнить их настройку.

3. Общая конструкция

3.1 Модели БТС представляют собой имитационные модели, основанные на методе конечных элементов, которые были разработаны для отображения трех различных форм и вариантов жесткости, характерных для европейского автопарка на момент разработки моделей. Ниже приводятся геометрические характеристики поперечных профилей, выполненных по осевой линии транспортных средств, соответствующих трем различным формам:

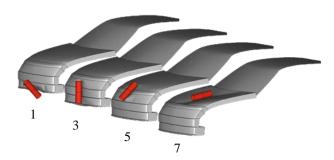

Рис. С.2 Компоненты моделей БТС, соответствующие типовой структуре

3.2 Физические свойства

3.2.1 Модель БТС включает компоненты, показанные на рис. С.З. Реакция конструкции моделируется с помощью реакции внешней поверхности оболочки, промежуточного слоя (для моделирования приборной панели автомобиля), типового пленочного покрытия (для моделирования структур, связанных с поглощением энергии, например разрывов), нижнего слоя (жесткая скелетная структура автомобиля) и слоя уплотнения, который функционирует как жесткий упор.

Рис. С.3 Компоненты моделей БТС, соответствующие типовой структуре

3.2.2 Модели БТС характеризуются только одной степенью свободы, а именно по оси х в системе координат транспортного средства. В начале модельного прогона модели БТС движутся с начальной скоростью. Предписания относительно дальнейшего движения по оси х отсутствуют. Массы моделей БТС указаны в таблице С.1. При этом моменты инерции транспортного средства не учитываются.

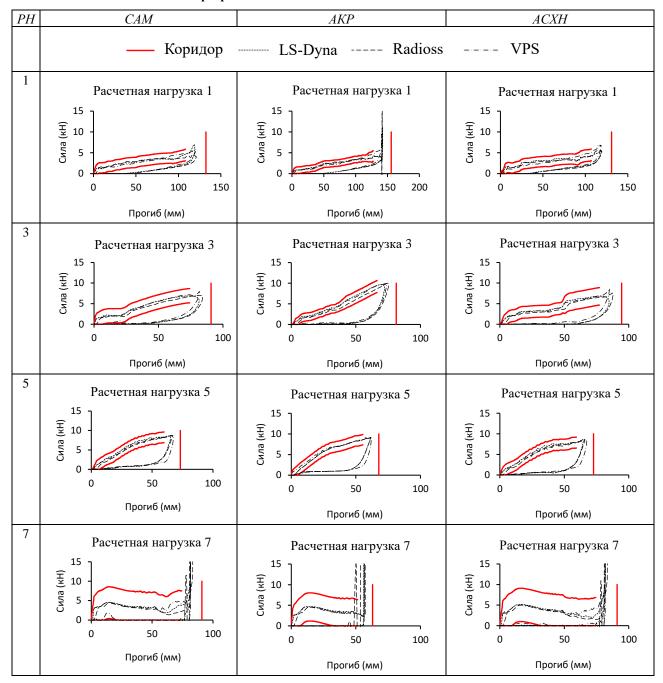

Таблица С.1 Масса моделей БТС

Формы моделей БТС	Полная масса (кг)
ACXH	1775
Семейный автомобиль	1690
Родстер	1462,5

4. Верификация результатов

- 4.1 В случае если у пользователя возникают сомнения в надлежащем функционировании моделей БТС с используемой версией решателя и контрольными картами, для целей верификации результатов можно выполнить модельные прогоны с использованием ударных элементов и моделей БТС. В случае выявления проблем (т. е. отклонений от эталонных кривых, соответствующих установленным коридорам и выделенных красным цветом) пользователю необходимо сменить версию решателя, пересмотреть настройки управления и сообщить о проблеме GRSP через одну из договаривающихся сторон.
- 4.2 Для сравнения используются указанные в таблице С2.1 файлы для соответствующего кода КЭ, формы транспортного средства и места воздействия ударного элемента. Ударное воздействие осуществляют с помощью жесткого цилиндрического ударного элемента (плотность = 7,89 E-6 кг/мм³, диаметр = 120 мм, высота = 400 мм и толщина стенки = 5 мм) по спойлеру (ID=1), бамперу (ID=3), переднему краю капота (ID=5) и капоту (ID=7) вдоль осевой линии транспортного средства, как показано на рис. С.4.

Рис. С.4 Места удара для верификации модели БТС



- 4.3 Выходные данные узла ударного элемента используются для сравнения результатов моделирования с эталонными значениями, приведенными в таблице С.2. Ускорение ударного элемента необходимо умножить на 5,95 кг, чтобы получить значение силы, а в качестве значения смещения используется результирующее смещение. Черными и серыми линиями на рисунках показаны реакции моделей БТС, соответствующих трем различным кодам КЭ, которые должны использоваться в качестве эталонных значений.
- 4.4 Разработка и испытание моделей БТС проводилась с помощью следующих версий решателей:
 - RADIOSS 2019;
 - LS-Dyna R12;
 - VPS 2019, 2020, 2021, 2022.

Можно использовать и другие версии решателей, однако в этом случае пользователь должен будет проверить поведение моделей БТС, прогнав модель с использованием ударного элемента в целях верификации результатов, описанной в данном пункте 4. Реакция моделей вплоть до максимального прогиба должна находиться в пределах заданных коридоров, т. е. соответствовать табличным значениям, встроенным во вспомогательные файлы, которые перечислены в таблице С2.1. Если требуется модификация моделей, то она должна соответствовать заданным коридорам, документироваться и доводиться до сведения GRSP через одну из договаривающихся сторон.

Резкое увеличение силы, соответствующее расчетной нагрузке 7 при прогибе ~80 мм для САМ и АСХН и ~60 мм для АКР, обусловлено искусственной моделированием резкой остановки соприкосновения промежуточного слоя со слоем уплотнения. Для подтверждения надежности работы моделей БТС даже при в условиях самого сильного удара (удара локтем об капот) модельные прогоны с использованием жесткого ударного элемента проводится с начальной кинетической энергией 367 Дж вплоть до резкой остановки. Резкая основе модельных определяется на прогонов использованием того же жесткого ударного элемента в рамках моделирования транспортного средства со всеми КЭ.

Таблица C.2
Эталонные кривые для моделирования воздействия ударного элемента с использованием моделей БТС Красные коридоры используются для сравнения реакции моделей БТС вплоть до максимального прогиба. Черные линии отображают реакции моделей БТС со всеми тремя различными кодами на момент разработки.

Приложение С — Дополнение 1

Список файлов моделей БТС6

Таблица C1.1 Файловая структура и названия моделей БТС. Модели представлены "как есть". Пользователи несут ответственность за проверку характеристик моделей в соответствии с пунктом 4 настоящего приложения.

Код КЭ	Система единиц	Основные файлы	Идентификатор файла
LS-Dyna	мм, кг, мс	GV_FCR_R3_1_mm_kg_ms.key	D-GV-1
		GV_RDS_R3_1_mm_kg_ms.key	D-GV-2
		GV_SUV_R3_1_mm_kg_ms.key	D-GV-3
	мм, т, с	GV_FCR_R3_1_mm_to_s.key	D-GV-4
		GV_RDS_R3_1_mm_to_s.key	D-GV-5
		GV_SUV_R3_1_mm_to_s.key	D-GV-6
RADIOSS	мм, кг, мс	GV_FCR_R3_1_mm_kg_ms.0000.rad	R-GV-1
		GV_FCR_R3_1_mm_kg_ms.0001.rad	R-GV-10
		GV_RDS_R3_1_mm_kg_ms.0000.rad	R-GV-2
		GV_RDS_R3_1_mm_kg_ms.0001.rad	R-GV-20
		GV_SUV_R3_1_mm_kg_ms.0000.rad	R-GV-3
		GV_SUB_R3_1_mm_kg_ms.0001.rad	R-GV-30
	мм, т, с	GV_FCR_R3_1_mm_to_s.0000.rad	R-GV-4
		GV_FCR_R3_1_mm_to_s.0001.rad	R-GV-40
		GV_RDS_R3_1_mm_to_s.0000.rad	R-GV-5
		GV_RDS_R3_1_mm_to_s.0001.rad	R-GV-50
		GV_SUV_R3_1_mm_to_s.0000.rad	R-GV-6
		GV_SUV_R3_1_mm_to_s.0001.rad	R-GV-60
VPS	мм, кг, мс	GV_FCR_R3_1_mm_kg_ms_VPS.inc	V-GV-1
		GV_RDS_R3_1_mm_kg_ms_VPS.inc	V-GV-2
		GV_SUV_R3_1_mm_kg_ms_VPS.inc	V-GV-3
	мм, т, с	GV_FCR_R3_1_mm_to_s_VPS.inc	V-GV-4
		GV_RDS_R3_1_mm_to_s_VPS.inc	V-GV-5
		GV_SUV_R3_1_mm_to_s_VPS.inc	V-GV-6

⁶ Указанные файлы доступны на веб-сайте Общей резолюции № 1 (OP.1) по соглашениям 1958 и 1998 годов: [https://unece.org/transport/standards/transport/vehicle-regulations-wp29/resolutions

Для целей ознакомления файлы на данный момент доступны по адресу: https://openvt.eu/EuroNCAP/tb024/-/tree/GV-models-for-DPPS/Generic_vehicle_Models].

Приложение С — Дополнение С2

Вспомогательные файлы7

Таблица С2.1

Вспомогательные файлы, призванные облегчить использование моделей БТС. Все основные файлы, перечисленные в этой таблице, должны быть настроены пользователем для получения конкретной конфигурации, предназначенной для моделирования воздействия ударного элемента, описанного в пункте 4 настоящего приложения С. Файлы доступны в обеих системах единиц измерения. В таблицу включены также эталонные кривые и соответствующие коридоры, указанные относительно каждой формы и расчетной нагрузки в таблице С.2.

LS-Dyna		
Шаблон для моделирования воздействия ударного элемента	\Auxiliary_files_Impactor_Sim\00GV_Main_I MP_Template.dyn	D-I-1
с учетом включения файлов: — Цилиндрический ударный элемент	\IMP_FILES\11a_IMP_NodEle_Cyl.inc	D-I-2
 Параметры ударного воздействия на САМ 	\IMP_FILES\10IMP_Parameters_FCR.inc	D-I-3
 Параметры ударного воздействия на АКР 	\IMP_FILES\10IMP_Parameters_RDS.inc	D-I-4
 Параметры ударного воздействия на АСХН 	\IMP_FILES\10IMP_Parameters_SUV.inc	D-I-5
 Образец контрольного файла 	$\label{lem:control} $$ \CONTROL_EXAMPLE \00_Controls_example. inc$	D-I-6
RADIOSS		
Шаблон для моделирования воздействия ударного элемента	\Auxiliary_files_Impactor_Sim\00GV_Main_I MP_Template_0001.rad	R-I-1
	\Auxiliary_files_Impactor_Sim\00GV_Main_I MP_Template_0000.rad	
с учетом включения файлов: — Цилиндрический ударный элемент	\IMP_FILES\IMPACTOR.inc	R-I-2
 Параметры ударного воздействия 	\IMP_FILES\IMP_Parameters_FCR_01.inc	R-I-3
на САМ	\IMP_FILES\IMP_Parameters_FCR_03.inc	R-I-4
\	\IMP_FILES\IMP_Parameters_FCR_05.inc	R-I-5
	\IMP_FILES\IMP_Parameters_FCR_07.inc	R-I-6
Параметры ударного воздействия на	\IMP_FILES\IMP_Parameters_RDS_01.inc	R-I-7
AKP	\IMP_FILES\IMP_Parameters_RDS_03.inc	R-I-8
	\IMP_FILES\IMP_Parameters_RDS_05.inc	R-I-9
	\IMP_FILES\IMP_Parameters_RDS_07.inc	R-I-10

Указанные вспомогательные файлы доступны на веб-сайте Общей резолюции № 1 (OP.1) по соглашениям 1958 и 1998 годов: https://unece.org/transport/standards/transport/vehicle-regulations-wp29/resolutions

[[]https://unece.org/transport/standards/transport/vehicle-regulations-wp29/resolutions

Для целей ознакомления файлы на данный момент доступны по адресу: https://openvt.eu/EuroNCAP/tb024/-/tree/GV-models-for-DPPS/Generic_vehicle_Models].

 Параметры ударного воздействия 	\IMP_FILES\IMP_Parameters_SUV_01.inc	R-I-11
на АСХН	\IMP_FILES\IMP_Parameters_SUV_03.inc	R-I-12
	\IMP_FILES\IMP_Parameters_SUV_05.inc	R-I-13
	\IMP_FILES\IMP_Parameters_SUV_07.inc	R-I-14
VPS	1	
Шаблон для моделирования воздействия ударного элемента	\Auxiliary_files_Impactor_Sim\fcr-impactor-template.pc	V-I-1
	\Auxiliary_files_Impactor_Sim\rds-impactor-template.pc	V-I-2
	\Auxiliary_files_Impactor_Sim\suv-impactor-template.pc	V-I-3
с учетом включения файлов:		
 Цилиндрический ударный 	\Auxiliary_files_Impactor_Sim\impactor.inc	V-I-4
элемент		
ОБЩИЕ АСПЕКТЫ		
Табличные значения эталонных		
кривых, представленные в таблице 2,		
для:		
 расчетной нагрузки 1 на САМ 	COMMON\Reference_Values_FCR_01.csv	C-A-1
 расчетной нагрузки 3 на САМ 	COMMON\Reference_Values_FCR_03.csv	C-A-2
 расчетной нагрузки 5 на САМ 	COMMON\Reference_Values_FCR_05.csv	C-A-3
 расчетной нагрузки 7 на CAM 	COMMON\Reference_Values_FCR_07.csv	C-A-4
 расчетной нагрузки 1 на АКР 	COMMON\Reference_Values_RDS_01.csv	C-A-5
 расчетной нагрузки 3 на АКР 	COMMON\Reference_Values_RDS_03.csv	C-A-6
расчетной нагрузки 5 на АКР	COMMON\Reference_Values_RDS_05.csv	C-A-7
 расчетной нагрузки 7 на АКР 	COMMON\Reference_Values_RDS_07.csv	C-A-8
 расчетной нагрузки 1 на ACXH 	COMMON\Reference_Values_SUV_01.csv	C-A-9
 расчетной нагрузки 3 на ACXH 	COMMON\Reference_Values_SUV_03.csv	C-A-10
 расчетной нагрузки 5 на ACXH 	COMMON\Reference_Values_SUV_05.csv	C-A-11
 расчетной нагрузки 7 на ACXH 	COMMON\Reference_Values_SUV_07.csv	C-A-12