

GE.24-09585 (E)

Economic Commission for Europe

Conference of European Statisticians

Seventy-second plenary session

Geneva, 20 and 21 June 2024

Item 5 of the provisional agenda

Use of Artificial Intelligence and Large Language Models

in official statistics and authoritative geospatial data

 Free to play: United Nations Trade and Development’s
experience with developing its own open-source Retrieval
Augmented Generation Large Language Model application

 Prepared by the United Nations Trade and Development

Summary

Generative artificial intelligence (AI), and in particular Large Language Models

(LLMs), have exploded in popularity and attention since the release to the public of

ChatGPT’s Generative Pre-trained Transformer (GPT)-3.5 model in November of

2022. Due to the power of these general purpose models and their ability to

communicate in natural language, they can be useful in a range of domains, including

the work of official statistics and international organizations. However, with such a

novel and seemingly complex technology, it can feel as if generative AI is something

that happens to an organization, something that can be talked about but not

understood, that can be commented on but not contributed to. Additionally, the costs

of adoption and operation of proprietary solutions can be both uncertain and high,

a barrier for often cost-constrained international organizations. In the face of these

challenges, United Nations Trade and Development (UNCTAD), through its Global

Crisis Response Group (GCRG), has explored and developed its own open-source

Retrieval Augmented Generation (RAG) LLM application. RAG makes LLMs aware

of and more useful for the organization’s domain and work. Developing in-house

solutions comes with pros and cons, with pros including cost, flexibility, and fostering

institutional knowledge. Cons include time and skill investments and gaps and

application polish and power. The three libraries developed to produce the app, nlp

pipeline for document processing and statistical analysis, local rag llm for running a local

RAG LLM, and streamlit rag for the user interface, are publicly available on PyPI

and GitHub with Dockerfiles. A fourth library, local_llm_finetune, is also available for

fine-tuning existing LLMs which can then be used in the application.

The document is presented to the Conference of European Statisticians’ session on

“Use of artificial intelligence and large language models in official statistics and authoritative

geospatial data” for discussion.”

 United Nations ECE/CES/2024/23

Economic and Social Council Distr.: General

30 May 2024

English only

https://pypi.org/project/nlp-pipeline/
https://pypi.org/project/nlp-pipeline/
https://pypi.org/project/local-rag-llm/
https://github.com/dhopp1/streamlit_rag
https://github.com/dhopp1/local_llm_finetune

ECE/CES/2024/23

2

 I. Introduction

1. Ever since ChatGPT’s release of its Generative Pre-trained Transformer (GPT)-3.5

model in November, 2022, the public has been captivated by the promise of generative

artificial intelligence (AI). Many people are by now familiar with the basic premise of a Large

Language Model (LLM), but briefly, they are artificial neural networks (ANNs) trained on

huge amounts of natural language text scraped from the internet or other sources. They are

then able to predict the next word or series of words based on prior context. The end results

are remarkably convincing and reasonable responses to prompts and queries. This

combination of a vast knowledge base and flexible natural language input and output have

found offerings like ChatGPT a fast home in peoples’ bookmarks bars.

2. LLMs’ utility and relevance can be further enhanced by the use of Retrieval

Augmented Generation (RAG), which will be discussed in more detail in section II. In short,

RAG offers a way for LLMs to be aware of and contextualized on new (in terms of either

domain or time) information. This can provide many benefits for organizations in general, as

well as for national statistical offices (NSOs). A non-exhaustive list of exemplary use cases

is presented below.

• Querying against a collection of trusted research on a topic to synthesize the

information and have it presented at the register of a desired knowledge level, e.g.,

getting non-technical summaries and explanations to a technical topic.

• Querying against up-to-date code documentation to help with coding for less popular

programming languages or libraries, which may be particularly relevant for NSOs,

who may use specific software.

• Querying against meeting notes, field reports, or other confidential administrative

documents to draft summaries. In cases where an official summary is required,

drafters could use these initial inputs to speed up their work. In cases where one is not

required, LLM-generated outputs could be used directly to summarize work and

proceedings that would normally not get such treatment and make them available to a

wider audience.

• Querying against your own organization’s reports to generate insights and drafting

help in the style of your organization, as well as retrieve relevant passages and ensure

institutional consistency on certain topics in a much more flexible and robust manner

than simple keyword search.

• Querying against the application programming interface (API) documentation and

table definitions for your statistical database to allow users easier access to the data.

For instance, users could ask questions in natural language like, “I would like the GDP

of countries in southern Africa in constant prices from 2012-2020”, and have a

database query generated, explained, and run automatically.

3. Having established the value of having an LLM that is aware of your own

organization’s specific body of work or domain, the question becomes how to implement and

utilize this. The current landscape of LLM services is split between offerings from large tech

companies, such as Google’s Gemini or Microsoft’s Copilot and Bing, or those from smaller

companies heavily invested in by larger tech companies, such as ChatGPT (Microsoft),

Mistral (Microsoft), or Claude (Google). There also exists a rich body of open-source LLMs

alongside these various closed-source offerings, often produced by these same companies.

Though open-source only organizations, such as Nous Research, also exist.

4. What follows is an analysis and explanation of United Nations Trade and

Development’s (UNCTAD) journey navigating this rapidly developing field, and how and

why a completely open-source, custom LLM application was developed in-house. Section II

will explain RAG in more detail, section III will examine the open- and closed-source LLM

landscapes, evaluating their pros and cons in the context of national statistics offices (NSOs)

and international organizations. Section IV will detail UNCTAD’s work, experiences, and

open-source libraries. Section V will examine future areas of improvement and work, while

section VI will conclude.

https://www.forbes.com/sites/bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/
https://www.forbes.com/sites/bernardmarr/2023/05/19/a-short-history-of-chatgpt-how-we-got-to-where-we-are-today/
https://gemini.google.com/
https://copilot.microsoft.com/
https://www.bing.com/
https://chat.openai.com/
https://www.forbes.com/sites/qai/2023/01/27/microsoft-confirms-its-10-billion-investment-into-chatgpt-changing-how-microsoft-competes-with-google-apple-and-other-tech-giants/
https://mistral.ai/
https://www.theverge.com/2024/2/26/24083510/microsoft-mistral-partnership-deal-azure-ait
https://www.anthropic.com/claude
https://www.cnbc.com/2023/10/27/google-commits-to-invest-2-billion-in-openai-competitor-anthropic.html
https://nousresearch.com/

ECE/CES/2024/23

 3

 II. Retrieval Augmented Generation

 A. Why do we need Retrieval Augmented Generation?

5. An acute shortcoming of LLMs’ architecture is their ignorance of information and

events that lie outside of their initial training data. This means information that happens after

their training or that wasn’t initially included is inaccessible to the model. One solution would

be to retrain the model daily or weekly and with text pertaining to your particular domain or

use case. However, when looking at the computing power and cost required to retrain an

LLM from scratch, which can be in the millions of dollars, this quickly becomes infeasible.

Though compute costs come down over time, LLM complexity and parameter count are set

to continue to grow, meaning the cost of training frontier models will also continue to grow

despite cheaper computing. This constrained knowledge base is a primary contributor to one

of LLMs’ most infamous characteristics, hallucinations. As the models work by predicting

the next most likely token (or word, simplified) in a series, they can generate reasonable

sounding responses even if they are not factually accurate. This is more likely to occur if a

query is asked about information the model did not have in its training data.

 B. Context windows

6. Now excluding training a model from scratch repeatedly due to cost and resource

restrictions, what are solutions for making LLMs useful for more specific domains and

current information and cutting down on hallucinations? The natural solution is to pass the

new information alongside the prompt. LLMs have a concept window, which is the amount

of tokens they are able to consider when generating a response. We can use this context

window to pass information alongside our query. For instance, if we ask an LLM to

“summarize the headline article from the BBC on this date”, we may be greeted with a

confident reply about one (more or less random) article of the likely many BBC articles

contained in the training data. However, if we ask, “summarize this article, the full text of

which is: ...”, we will get a response grounded in the article we are actually interested in.

7. A limitation of this approach is the size of the context window, which varies by LLM.

Context windows are expanding as the field develops, potentially to millions of tokens, but

are still a limiting factor. The popular open-source LLama 2 LLM produced by Meta for

instance has a context window of 4,906 tokens. This is sufficient to pass the entirety of a

news article to an LLM, but insufficient if the knowledge base extends to hundreds or

thousands of domain-specific documents or datasets.

 C. Chunking and embedding

8. RAG addresses this problem by introducing an extra step into the generation pipeline.

A document or large corpus of text is first split into smaller chunks, potentially enriched with

metadata, then converted into an abstracted numerical vector, or embedding. Embedding

models can capture semantic and contextual relationships between words and concepts. For

instance, in the multi-dimensional vector space, “mountain” and “hill” would have

embeddings that are close to each other, despite being far from each other in terms of letters.

 D. Vector database and retriever

9. These embeddings are then stored in a vector database. We now have our new

information encoded in a searchable database. To make this information available to the

LLM, we need to use a retriever to first determine the most relevant chunks of text to the

query. The retriever embeds the query and searches for the N most relevant/closest text

chunks in the vector database. The returned chunks are then passed alongside the query to

the LLM to provide answers given the new context.

https://fortune.com/2024/04/04/ai-training-costs-how-much-is-too-much-openai-gpt-anthropic-microsoft/
https://fortune.com/2024/04/04/ai-training-costs-how-much-is-too-much-openai-gpt-anthropic-microsoft/
https://www.ibm.com/topics/llama-2

ECE/CES/2024/23

4

 E. Limitations

10. It is crucial to understand that the LLM is not simultaneously aware of all the

information contained in the vector database, as is the case for information contained in its

training data. Information in the training data is embedded directly into the LLM’s parameters

and weights. Rather, the base LLM is utilized for its knowledge base and what it has already

learned about providing answers in natural language. The new text chunks retrieved from the

vector database and passed alongside the query to the context is the only mechanism where

the LLM is directly aware of new information. As a result, substantial components in the

performance of a RAG LLM are the embedding model, vector database, and retriever, not

just the LLM itself.

 III. Open-source vs. proprietary offerings

 A. Proprietary offerings

11. A strong caveat to this section is the fact that the field is developing extremely rapidly,

with new companies and products appearing and disappearing all the time. What is described

here is relevant at the time of writing, but may no longer be in just a few month-time. It is in

no way meant to be a comprehensive overview of every product, library, and service available

in the field, merely a quick overview for context. That being said, currently, when considering

an organization’s offerings when it comes to adopting a RAG LLM, paid options come in all

sorts of shapes, sizes, and pricing models. One of the most “plug and play”, user-ready RAG

options is Microsoft’s Copilot Pro, which costs 30 United States Dollar (USD) per user per

month for businesses and can access documents stored in Sharepoint and query over them.

Beyond that, there are a myriad of products, companies, APIs, and libraries for each

component of a RAG LLM, including the embedding model (e.g., OpenAI), the vector

database (e.g., Pinecone, Elasticsearch), and of course the LLM itself (e.g., OpenAI, Mistral,

Claude). Implementing these types of solutions may still require coding. Smaller companies

exist which may offer a more finished, user-friendly application while being built off of the

APIs and services of the bigger players.

12. Building your own application but using paid components opens up the pipeline to

potentially multiple cost producing touchpoints. For example, to run your application, you

may be paying OpenAI for its embedding model, then paying Pinecone to store your

embeddings in their vector database, then paying Anthropic to query against their Claude

LLM, all while still needing to somehow manage the final user-facing interface.

 B. Open-source landscape

13. All of the functionality required to run a RAG LLM is also obtainable using

exclusively open-source, free software, as will be detailed further in section IV. A few of

these libraries, frameworks, and resources will be mentioned here, but there exist many more.

In terms of embedding models, there are dozens available for free on Hugging Face, tuned

for various general or specific use cases. Pgvector provides a Postgres-based vector database,

Chroma DB offers another open-source vector database solution, while there are hundreds of

available LLMs on Hugging Face. Frameworks for creating RESTful APIs include Flask and

FastAPI, while options for front ends include Streamlit and Gradio, among many others. For

creating the final RAG pipeline, two notable libraries include LangChain and LlamaIndex.

 C Pros of in-house development

 1. Cost

14. One of the simplest pros to developing generative AI applications in-house is cost.

The cost of an in-house application comes down to the salary of the staff who initially develop

it and the cost of the machine(s) where it is run. The latter can either be borne as an ongoing

https://blogs.microsoft.com/blog/2024/01/15/bringing-the-full-power-of-copilot-to-more-people-and-businesses/
https://openai.com/blog/new-embedding-models-and-api-updates
https://www.pinecone.io/
https://www.elastic.co/enterprise-search/vector-search
https://openai.com/pricing
https://docs.mistral.ai/platform/pricing/
https://www.anthropic.com/api
https://huggingface.co/sentence-transformers
https://github.com/pgvector/pgvector
https://www.trychroma.com/
https://huggingface.co/models?other=LLM
https://flask.palletsprojects.com/en/3.0.x/
https://fastapi.tiangolo.com/
https://streamlit.io/
https://www.gradio.app/
https://www.langchain.com/
https://www.llamaindex.ai/

ECE/CES/2024/23

 5

service fee by provisioning a cloud computer, or as a one-time fixed cost by buying a graphic

processing unit(s) (GPU(s)). Here, it is important to note the uncertain pricing environment

around managed solutions. In 2023, ChatGPT was estimated to spend 700,000 USD a day

just operating ChatGPT. This figure also increases directly related to usage and the number

of users, as the primary cost is compute, which is mutually exclusive between queries. As

companies continue to race to gain a competitive advantage in the generative AI space, there

is no proven, long-lasting, profitable, and sustainable established pricing model. That means

that services may be offered at a loss simply to build market share, and may not be sustainable

long term. This introduces the risk of becoming dependent upon a certain service for a RAG

workflow, then being caught out if that service experiences a large cost increase.

15. Per user pricing models are also common in the field. For example, to roll out

Microsoft Copilot Pro to an organization of 500 people would cost 15,000 USD per month.

To host the application UNCTAD has developed on a GPU-enabled Azure cloud machine

supporting unlimited concurrent users costs about 144 USD per month, and can be made

available to the entire organization. That cost is at on-demand pricing, it sinks to as low as

77 USD per month with longer-term agreements. Benefits come both in terms of lower

operating costs, but also in terms of flexibility in terms of how and when those costs are

incurred.

16. The other, potentially larger difficulty than the cost itself in using paid solutions in

such a fast-developing field is the institutional burden of getting new cost streams approved

at large international organizations or NSOs. Waiting for a multi-month requisition process

before being able to proceed in development is extremely difficult when the entire field is

developing at lightning pace. Requested tools, services, or models may be outdated by the

time resources are approved. By relying on free, open-source software, development is not

constrained by resources or bureaucracy, but free to incorporate the latest developments as

they are released.

 2. Flexibility

17. Flexibility in terms of features is another benefit of the in-house approach. Rather than

receiving a finished product and relying on an external provider to add features at their

discretion, the product is extendable and able to be improved on-demand. This results in

greater flexibility in making the application relevant to how the organization wants to work

with it. It also means the solution is not subject to change. A commercial offering is not

guaranteed to continue working in its current form. The company may go bust, change their

product offerings or pricing, or introduce censorship. With an in-house solution, it can persist

in a given form for as long as desired, since every component is directly controlled. For

instance, Google’s Gemini has been updated to introduce stronger censorship, which has led

to instances of over-correction. Google may fine-tune and improve its censorship in the

future, but the key takeaway is the principle. A closed-source offering can be subject to

change without your input, knowledge, or agreement, which can pose a problem if workflows

are built around the assumption of a certain functionality being present or working as was

originally intended.

 3. Fostering of institutional capacity

18. Benefits also include the accumulation and fostering of institutional knowledge. By

researching and developing an in-house tool, the organization gains valuable know-how and

the ability to work with generative AI not merely as a passive consumer, but also as an active

developer. Many of the components developed for the RAG application have uses for other

data products. For instance, the value of a vector database containing all of an organization’s

outputs that is searchable via natural language queries is not difficult to see, and is a direct

byproduct of the RAG application development process. It also means the organization has

a deep understanding of how the technology works, which is invaluable when it comes to

training staff in the proper way to use and interpret model outputs. This also highlights the

drawbacks of hiring temporary, external consultants to build a product. Delivery of a final,

complete product is not particularly compatible with how the field has been developing.

Better is to foster the capacities in-house, so the product can be continually developed and

improved, rather than having a black box frozen in time which no one knows how to update.

https://finance.yahoo.com/news/chatgpt-cost-bomb-openais-losses-125101043.html
https://new.pythonforengineers.com/blog/so-evidently/

ECE/CES/2024/23

6

Additionally, in-house staff are able to repurpose components from what they have developed

for different applications, something much more difficult to achieve with project-based

consultants. Finally, as the organization gains a deeper understanding of generative AI’s

capabilities, limitations, development process, and potential applications, it can offer more

comprehensive support and education in this area. This knowledge can inform UNCTAD’s

substantive work and expand the guidance and support it provides to developing countries

on the topic.

 4. Privacy and data control

19. A last benefit is privacy and data control. By developing an in-house system,

organizations can be sure that their data is stored only where they want it to be. This includes

not only the actual documents provided to the RAG system, but also the queries that staff

members send. The former is important when you are working with confidential or private

data. The latter is an often overlooked aspect of LLMs, where companies like OpenAI store

users’ chat history. ChatGPT and other services are free not only to acquire new users and

increase usage of generative AI in general and thus grow the market for their services, but

also to train future versions of the model. This opens up personal and work conversations to

not only those companies, but potentially the entire user base of future versions, and

potentially advertisers. Though OpenAI says they do not currently sell chat history data,

nothing is stopping them from doing so in the future. To say nothing of the potential for data

breaches. None of which is a risk with an in-house solution, as the organization maintains

full control of what is saved, whether it is saved, and where it is saved.

 D. Cons of in-house development

 1. Availability of resources and capacity

20. There are of course substantial cons associated with the in-house approach. The key

one is availability of staff with the proper skill set to set up and develop such a system.

Though international organizations and NSOs are focusing increasingly on hiring data

scientists and data engineers with the skills to actualize such projects, there remains a sizable

skills gap.

 2. Scalability

21. Other drawbacks include scalability. By going it on your own, you are responsible for

handling scaling of the application. What may work fine for 10 users may be more difficult

to get working for 100 or 10,000 users. Paid solutions have hundreds of people working on

infrastructure and scaling, meaning this issue is abstracted away from application

development.

 3. Polish

22. Polish, robustness, and feature set are other important aspects. Companies with

hundreds or thousands of employees will naturally be able to make much more robust and

polished user interfaces than can be made internally. This can include things like aesthetics

and design, robustness to different edge cases and system states, and the addition of more

quality of life and substantive features. These are all easier to achieve with dedicated staff

developing a single service for hundreds or thousands of paying customers.

 4. Access to frontier models

23. Finally, there is the issue of access to frontier models. Most of the state-of-the-art

models in terms of power and performance are closed-source. Open-source models are likely

to always remain a step behind.

24. While the options of an open-source, in-house solution and a paid solution were

presented as a binary, the reality is much more nuanced. There is nothing stopping you from

using open- source for your front end and vector database, while using OpenAI’s LLM API

https://www.androidauthority.com/does-chatgpt-save-data-conversations-3310883/
https://www.androidauthority.com/does-chatgpt-save-data-conversations-3310883/

ECE/CES/2024/23

 7

for the “brains” of the model, or vice versa. From one end to the other is a spectrum that will

likely differ from organization to organization based on their resources and needs.

 IV. United Nations Trade and Development’s work and
experience

 A. Technical details

25. This section will detail the work UNCTAD has done so far in developing its in-house

application. Much like the field itself, work is ongoing and likely to change and expand after

the time of writing, so check the mentioned repositories for the latest developments.

26. The first component necessary in a RAG application is the processing of the text

corpus into a format that works with the embedding model. UNCTAD had already previously

developed a library for the processing of Portable Document Format (PDF) (including optical

character recognition conversion for scanned documents), Word, and HyperText Markup

Language (HTML) documents into raw text. While LlamaIndex provides document loaders

for these file types as well, the library has the added benefit of easily adding metadata

information to the texts, as well as enabling statistical analysis and topic modelling.

27. LlamaIndex was the primary tool used for the RAG LLM. The vector database is

stored in a local PostgreSQL and made compatible with embeddings and vector search via

pgvector. The final pipeline was packaged together in another library. The library is LLM-

agnostic, accepting any LLM stored in GPT-Generated Unified Format (GGUF) format, as

well as embedding model-agnostic.

28. The final user-facing front end was written in Streamlit and includes provisions for

multiple simultaneous users and persistence of vector databases. The latter is important so

that large corpora do not need to be revectorized every use.

29. All three libraries are available on GitHub and PyPI and can be installed to duplicate

the application on any machine. Dockerfiles are also available to run the application, further

lowering the barrier to entry. Depending on the size of the LLM you use, it runs well on any

Nvidia GPU- enabled machine, as well as on Apple silicon Macs. It can also run on any

computer’s Central Processing Unit (CPU), albeit more slowly, though still usable. Unlimited

simultaneous user sessions are supported. The only constraint is simultaneous generation,

where requests received at the same time are queued and executed in the order received.

Figure below shows an example image of the application.

https://github.com/dhopp1/nlp_pipeline
https://github.com/pgvector/pgvector
https://github.com/dhopp1/local_rag_llm
https://github.com/dhopp1/streamlit_rag
https://streamlit.io/

ECE/CES/2024/23

8

 Example screen of the application

 B. Institutional space and support

30. One of the main findings in the course of the development of the application was the

importance of institutional space for pursuing innovative or long shot data products. Data

science projects are difficult to perform under the burden of traditional work programs and

mandate structures. This and other similar ones (such as the NLP pipeline library) were

developed without a clear application or request in mind. Despite this lack of an immediate

recognized need, they have gone on to have the potential for transformative impact across

the organization’s work. Further, developed and maintained correctly, they tend to build and

compound in utility over time. For instance, besides the aforementioned natural language

search vector database, the front-end interface can be repurposed for other internal or external

data products. Work of this type is more akin to building a platform to enhance other work

than producing an output in and of itself.

31. All of the described work was carried out by UNCTAD’s Global Crisis Response

Group (GCRG). These and other innovations, not only around data products but also around

working methods, communication formats, and research approaches, were enabled by the

GCRG’s unique (within UNCTAD) institutional setting. With no legacy reports or work

programs to fulfil, the group could focus on quick-response innovation projects. With this

dedicated space, innovation could bloom, not rely on staff working nights and weekends on

passion projects alongside their regular work, or on slow and incremental steps, or, as is often

the case, not happen at all.

32. As such, it is my hope that successful projects like this serve to further convince the

official statistics and international organization community of the importance of investing in

not only data science capacities, but institutional space for the field.

 V. Future work

 A. Fine-tuning

33. As with any data product, there are still many avenues for improvement. One is the

application of fine-tuning to an existing LLM model. Fine-tuning involves freezing the

https://github.com/dhopp1/nlp_pipeline

ECE/CES/2024/23

 9

majority of the weights of a pre-trained model, and only training a small subset of layers for

the task or domain of interest. Since only a small subset of weights are adjusted, the

computational and cost requirements of fine-tuning are substantially less than that of pre-

training from scratch. This enables the LLM to maintain the knowledge base, sentence

construction abilities, etc., that it learned from pre-training, while making it more suitable for

a particular task. Fine-tuning can be used for either knowledge injection or task

augmentation. For instance, if a base model is originally trained for text completion, as is

usually initially the case, it won’t be particularly useful for chat interfaces. Fine-tuning it on

question-response pairs then enables it to perform much better with prompts in this style.

While fine-tuning has been found to be less useful for specific fact retrieval than RAG in

many instances, it has the benefit of making the LLM simultaneously aware of a large corpus

of information, rather than relying on the embedding model and vector search function and

being constrained by the context window in terms of how much information the actual LLM

itself can pull from when responding to queries. The best solution likely combines both

approaches, using RAG on a fine-tuned LLM. For instance, we could fine-tune an LLM on

the whole corpus of UNCTAD publications, specializing it on UNCTAD’s positions, style,

and body of work, then use RAG for direct information retrieval varying by the specific

application.

34. Alongside the other three libraries, the local_llm_finetune library was also developed.

The library, usable via Docker, leverages the open-source Unsloth package to enable local

fine-tuning on corpora of raw text, without question and answer pairs, for knowledge and

style injection.

 B. Retrieval Augmented Generation optimization

35. Another avenue of improvement involves improving the existing RAG system. This

includes things like fine-tuning or improving the embedding model and vector search

functions in isolation. This would ensure that the most relevant and helpful text chunks are

being passed to the LLM for answers. Hyperparameters can also be optimized, such as

researching which chunk sizes, chunk overlap values, context window sizes, etc., produce

the most helpful answers for the different use cases UNCTAD has in mind. Introducing pre-

filtering steps to the vector database may also be helpful. For instance, rather than relying on

the retriever to parse from your query that you are only interested in documents from a certain

year, the database could be pre-filtered for that year before the search, dramatically shrinking

what needs to be searched and increasing the likelihood of returning relevant and useful

chunks for the LLM.

 C. Rollout, adoption, and training

36. Final next steps include the process of rollout, adoption, and training. These steps are

crucial for any new data product, but particularly for LLMs. Because of their natural language

responses, they can appear omniscient and confident in any response they give. If users do

not understand how they work and their limitations and do not follow correct validation

guidelines, this can lead to hallucinations and wrong information making its way into official

reports or other pieces. RAG in particular helps with this issue, as the application returns

alongside its answers both the actual texts it is basing its answer off in addition to the

metadata for those texts. So, it is relatively easy to verify that if a fact or figure the LLM

returns is not contained in the source texts, it is likely a hallucination. Still, this requires

training and awareness for end users.

 VI. Conclusion

37. Generative AI offers much promise for NSOs and international organizations, just as

it does for the private sector. While it is wholly possible they will benefit from it by being

bystanders, waiting for large tech companies to deliver ready-made solutions on their terms,

the field’s rich open-source community and resources means they are also able to exercise

agency in this new era. UNCTAD’s experience has shown that with the proper investment in

https://arxiv.org/abs/2312.05934
https://github.com/dhopp1/local_llm_finetune
https://unsloth.ai/

ECE/CES/2024/23

10

data science capacity and institutional space, it is possible to develop generative AI

applications entirely for free and in-house, customized to an organization’s specific needs.

Additionally, developing solutions on your own or leveraging paid services is not a binary.

The developed infrastructure and institutional knowledge acquired in this process do not

preclude UNCTAD from introducing paid components into the pipeline, or switching to a

completely managed solution. For instance, in the future the LLM could be changed from

local open-source to an OpenAI API call, releasing the requirement for hosting on a GPU-

equipped machine, addressing scale, and giving access to frontier models all while continuing

to not incur costs for the vector database or embedding model. Development of in-house

skills increases flexibility. Hopefully, by sharing UNCTAD’s experience and contributing to

the vibrant open-source community around generative AI with the tools it has developed, we

can lower the barrier to entry for NSOs and international organizations in developing their

own solutions.

	Free to play: United Nations Trade and Development’s experience with developing its own open-source Retrieval Augmented Generation Large Language Model application
	Prepared by the United Nations Trade and Development

	I. Introduction
	II. Retrieval Augmented Generation
	A. Why do we need Retrieval Augmented Generation?
	B. Context windows
	C. Chunking and embedding
	D. Vector database and retriever
	E. Limitations

	III. Open-source vs. proprietary offerings
	A. Proprietary offerings
	B. Open-source landscape
	C Pros of in-house development
	1. Cost
	2. Flexibility
	3. Fostering of institutional capacity
	4. Privacy and data control

	D. Cons of in-house development
	1. Availability of resources and capacity
	2. Scalability
	3. Polish
	4. Access to frontier models

	IV. United Nations Trade and Development’s work and experience
	A. Technical details
	Example screen of the application

	B. Institutional space and support

	V. Future work
	A. Fine-tuning
	B. Retrieval Augmented Generation optimization
	C. Rollout, adoption, and training

	VI. Conclusion

