Implementing an Adaptive Survey Design (ASD) for the Transformed Labour Force Survey (TLFS)

Michalina Siemiatkowska

Senior Research Officer Survey Design Team Michalina.Siemiatkowska@ons.gov.uk

UNECE Expert Meeting on Statistical Data Collection and Sources 22-24 May 2024

Context

Transformed Labour Force Survey (TLFS):

- Transformation of the original Labour Force Survey (LFS)
- Focusing on the re-design of the survey for **online data collection**

Position in 2022

- TLFS response rate of **38%** from online/telephone modes = great start!
- BUT experiencing differential non-response bias (despite respondent centred re-design)
 - Responding sample biased towards white, male, home-owners, aged 45+
 - Unequal response distribution across **Region**, **Index of Deprivation and Output Area Classification**

Knock-to-Nudge and Adaptive Survey Design

What is Knock-to-Nudge (KtN)?

- Interviewers visit addresses (remain on doorstep) to encourage response via a remote method (telephone or online survey mode)
 - o interviewer can build rapport
 - less expensive
 - can leave a 'called today' card

What is Adaptive Survey Design (ASD)?

- "Data-driven tailoring of data collection procedures to different sample members, often for cost and bias reduction" (Schouten, Peytchev & Wagner, 2018)*
 - o divide your sample into smaller groups/strata that have similar characteristics
 - o apply alternative survey design features to different groups
 - o objective is to improve targeted survey outcomes
- Office for National Statistics

ASD Strategy and Methodology

Structured trial & error approach using R-indicators** (Schouten and Shlomo, 2015)***

Methodology

- Used logistic regression, **CVs, R-Indicators and Partial R-Indicators** to identify the variables and categories of variables driving variation in response propensities
- Strongest predictors of response
 - √Age (<45)
 - ✓ Urban/Rural Classification (Urban)

✓Index of Multiple Deprivation (IMD deciles 1-4)

Constructed **8 strata** based on these variables that were attached to the sampling frame

Overall response rate

R-indicators and CVs

To see an improvement in the representativity of the data: ✓ Increase in Representativity indicator (R-indicator) ✓ Decrease in Coefficent of Variation (CV)

Sample composition

		TLFS Pre-ASD	TLFS Post-ASD		
Age	Under 45	40.28% ***	42.63%		
	45 and over	59.72%	57.37%		
		TLFS Pre-ASD	TLFS Post-ASD		
Ethnicity	White	88.74%	87.69%		
	All Other	11.26% ***	12.31%		
Tenure		TLFS Pre-ASD	TLFS Post-ASD		
	Home Owner	77.67%	74.65%		
	All Other	22.33% ***	25.35%		

Office for National Statistics

- * Significant at p < .05
- ** Significant at p < .01

*** Significant at p < .001

Field operations

Learnings

- Easy to under-estimate the operational challenges of implementing an ASD
 - Issues with recruiting/retaining interviewers under capacity
 - New way of operating for ONS and interviewers culture change
 - No in-home interviewing just a 'nudge'
 - Only visiting 'hard-to-reach' cases greater ability to persuade/overcome objections

Improvements in TLFS survey quality

- Increase in representativity
- Reduction in **non-response bias**
- Improved granularity of data helps to meet external stakeholder expectations
- Office for National Statistics

Next steps

• Continue working with field operational colleagues to optimise ASD

 Revisit interviewer guidance, communications, performance targets, allocation process, management information (MI)

Begin work on the next iteration of the ASD

Explore alternative auxiliary data (e.g., admin data)

Explore additional design features (e.g., incentives, materials)

Continue to build expertise and knowledge within the ONS

 $_{\odot}$ Working collaboratively with other teams

Continue to promote research

 \odot Publish working papers, blogs, conferences

References

- * Schouten, B., Peytchev, A., & Wagner,
- J. (2017). Adaptive survey design. Chapman and Hall/CRC.
- ** Schouten, B., & Shlomo, N. (2017).
- Selecting adaptive survey design strata with
- partial R-indicators. International Statistical Review, 85(1), 143-163.
- *** <u>RISQ Representative Indicators for Survey Quality -</u> <u>Cathie Marsh Institute for Social Research (CMI) - The</u> <u>University of Manchester</u>

Thank you for listening!

Michalina.Siemiatkowska@ons.gov.uk

Background on the transformation of the Labour Force Survey

• Purpose:

- Labour Force Survey (LFS) = survey of **households** living at private addresses in the **UK**
- Provides information on the UK **labour market** to help develop, manage, evaluate and report on labour market policies
- Transformed Labour Force Survey (TLFS):
 - Transformation of the Labour Force Survey (LFS) in response to the COVID-19 pandemic
 - Focusing on the re-design of the survey for online data collection
 - Underlying principles:
 - Digital by default
 - Statistical redesign and rationalisation not 'lift and shift'
 - 'Respondent Centred Design' putting the respondent back at the heart of the design (see <u>Wilson, L &</u> <u>Dickinson, E (2021) Respondent Centred Surveys</u>)
- Office for National Statistics

Key aspects of the TLFS design

- Large W1: Issued sample size 140,000 addresses per quarter
- Sample residents in GB in private households. No communal establishments
- Sample drawn from AddressBase Premium

 database comprised of local authority data,
 Royal Mail data, and Ordnance Survey data
- Systematic random sample: sample ordered by geography and addresses are selected at regular intervals
- Longitudinal survey element 5 waves
- **Mixed mode**: online first (2020), telephone (Feb 2022), face-to-face (Nov 2022)
- Adaptive Survey Design (2022)
- TLFS User Guidance

The transformation journey so far...

The transformation journey so far...(papers)

Test 1

Test 2

Publications from the mixed mode (online and F2F) in 2018:

- Technical report
- <u>Characteristics report</u>
- <u>Comparative estimates report</u>

Attrition test

TLFS Wave 1 Respondent Timeline

What does the TLFS Adaptive Survey Design look like?

- TLFS data collection strategy was the same for all sampled addresses
 - Experiencing differential non-response bias
 - One size does not fit all!
- Introduced ASD and KtN in Nov 2022
- ASD strategy based on Statistics Netherlands work
 - Structured trial and error approach using R-indicators
- 4 week data collection
 - If no response from web/telephone in first 2 weeks KtN data collection begins
- KtN is only targeted at non-respondents most likely to reduce bias

ASD Methodology

Step 1. Create sample strata using auxiliary data:

- Logistic regression model was applied to historical TLFS data to identify auxiliary variables strongly associated with response in order to formulate the ASD strata.
- Variables considered were Index of Multiple Deprivation, Urban/Rural Classification, Country of Birth, Age & Ethnicity (limited by available data).
- Derived and examined **CVs**, **R-Indicators and Partial R-Indicators** to identify the variables and categories of variables driving variation in response propensities.
- Strongest predictors of response:
 - > Age (<45)
 - > Urban/Rural Classification (Urban)
 - Index of Multiple Deprivation (IMD deciles 1-4)

Constructed 8 strata based on these variables that were attached to the sampling frame

ASD Strata

- Ran simulations to assess the effect of improving response across these strata.
- Simulations showed we could reduce the CV and increase the R-indicator by focussing our efforts on **strata 2-5**.

Strata	Urbanicity	Deprivation	Age group	
1	Urban	Less deprived	45+	
2	Urban	More deprived	16-44	
3	Urban	Less deprived	16-44	
4	Urban	More deprived	45+	
5	Non-urban	More deprived	16-44	
6	Non-urban	More deprived	45+	
7	Non-urban	Less deprived	16-44	
8	Non-urban	Less deprived	45+	

ASD Methodology

Step 2. Identify design features to allocate to the strata:

- Potential to include numerous interventions in the ASD (e.g. mode, incentive, materials...)
- Keeping it simple
- 1 intervention = 'Knock to Nudge' follow up
- Our ASD targets KtN data collection at **under-represented strata** based on response propensities in order to **reduce the variation in response propensities** for a selected set of auxiliary variables.
- This will ensure that data collection resources are used in the most efficient way whilst increasing response from historically under-represented population groups.

ASD Methodology

Step 3. Identify quality and cost indicators to support decisions:

- Well-established in the survey literature that survey response rates as single indicators provide insufficient information about the quality of estimates based upon respondent data.
- There is a need for indicators that complement the response rate and measure the contrast between non-respondents and respondents.
- Therefore, we asses a number of quality indicators:
 - Response rate
 - Coefficient of Variation (CV) of response propensities and R-Indicators
 - Characteristic profile of responding sample
 - Survey estimates

Response rate by ASD strata

Response rate increase from weeks 3 & 4 is greater among the strata that received KtN visits.

Variable level partial R-indicator

	Unconditional Partial Indicator						Conditional Partial Indicator						
	Aug 2022 - Oct 2022 Pre-KtN			Nov 2022 – Jan 2023 Post-KtN			Aug 2022 - Oct 2022 Pre-KtN			Nov 2022 – Jan 2023 Post-KtN			
	Estimate	CI_LB	CI_UB	Estimate	CI_LB	CI_UB	Estimate	CI_LB	CI_UB	Estimate	CI_LB	CI_UB	
U/R	0.032587	0.032587	0.034853	0.022448	0.020088	0.024808	0.008207	0.007639	0.0053733	0.004703	0.002343	0.007062	
IMD	0.06489	0.062743	0.067037	0.051085	0.048789	0.053381	0.046816	0.046872	0.0447243	0.039345	0.037049	0.041641	
Age	0.054932	0.052701	0.057162	0.03711	0.034767	0.039453	0.029551	0.028596	0.0263655	0.016422	0.014079	0.018765	

Unconditional partial R-indicator:

- Reduced for all variables, meaning the variables impact on response has reduced.
- Deprivation had the greatest impact on response pre-KtN and post-KtN

Conditional partial R-indicator:

- Measures impact of a variable conditional on all other variables
- **Deprivation** had the greatest impact

Recommendation: deprived areas could receive more focus in future iterations of ASD

Category level partial R-indicator

	Unconditional Partial Indicator							Conditional Partial Indicator						
	Aug 2022 - Oct 2022 Pre-KtN			Nov 2022 – Jan 2023 Post-KtN			Aug 2022 - Oct 2022 Pre-KtN			Nov 2022 – Jan 2023 Post-KtN				
	Estimate	CI_LB	CI_UB	Estimate	CI_LB	CI_UB	Estimate	CI_LB	CI_UB	Estimate	CI_LB	CI_UB		
Urban	-0.0141	-0.01481	-0.0134	-0.00975	-0.01051	-0.00898	0.004232	0.002977	0.005487	0.0026	0.00128	0.003921		
Rural	0.029377	0.027914	0.03084	0.020222	0.018637	0.021806	0.006359	0.004468	0.008251	0.0039	0.001925	0.005911		
IMD 1-4	-0.0501	-0.05093	-0.04927	-0.03947	-0.04045	-0.03848	0.035162	0.033557	0.036767	0.029		0.030944		
IMD 5-10	0.04124	0.040556	0.041924	0.032436	0.031627	0.033245	0.030993	0.029559	0.032428	0.026	0.02478	0.027865		
Age 16-44	-0.03346	-0.03429	-0.03263	-0.02249	-0.0234	-0.02158	0.018891	0.017426	0.020356	0.0107	0.009215	0.012273		
Age 45+	0.043565	0.042489	0.04464	0.02952	0.028327	0.030713	0.021468	0.01978	0.023155	0.0122	0.010642	0.014197		

Unconditional partial R-indicator:

Positive value = category is over-represented, negative value = category is under-represented

Conditional partial R-indicator:

 Impact of that category on the deviation from representative response after conditioning on the other variables

Rural, IMD 1-4, Age 45+ has a greater impact on the deviation of response after conditioning on other variables IMD 1-4 has largest negative unconditional value and largest conditional value = more effort is needed here