UNECE Hydrogen Task Force
Hydrogen at UNECE: Timeline

- **2017**: Introduction of hydrogen as an emerging topic
- **2020**: Diffusion of official UNECE recommendations on hydrogen
- **2022**: Commitment to creating an UNECE Hydrogen taxonomy
- **2023**: Publication of results on hydrogen production pathways in CIS countries

Launch of a Hydrogen Task Force
Hydrogen Task Force

- Classification
- Value chain development
- Synergies
• Key elements of proposed classification
• International efforts
• Next steps towards certification
Chapter 1: Status quo and outlook for the hydrogen industry and pathway towards a global hydrogen economy .. 1
 A. Hydrogen industry today .. 1
 B. Towards a global hydrogen market .. 5
Chapter 2: Introduction into Global Technical Standards for Hydrogen Safety and Sustainability 7
 A. Hierarchy of elements within a Regulatory Framework – Pyramid of RCS
 (Regulations, Codes & Standards) .. 7
 B. Key terms and definitions .. 8
 C. Role of ISO and IEC .. 9
Chapter 3: Sustainability disclosures and reporting standards for investors and financial markets 14
Chapter 4: Role of Certification Solutions .. 15
Chapter 5: Towards a Global Regulatory Framework for a Hydrogen Certification System 17
Chapter 6: Hydrogen Classification ... 19
 A. Classification and its purposes ... 19
 B. Hydrogen Classification Beyond Colours .. 20
 C. Hydrogen Classification Options .. 21
 D. Hydrogen Classification vs Certification .. 22
Figure 13
Hydrogen Product Climate Impact Triangle

Classification is NOT Certification, NOT Methodology

Classification
- Generic Grade or Label to reflect GHG footprint range.
- For stakeholder information only.

Certification
- Quantified GHG footprint per Methodology of H2 or carrier product issued by a Certification Body and verified by a Verification Body. Contains GO. Part of legal conditions of a supply contract. Compliance or disclosure scheme. Subject to mutual recognition.

Driven by Public Policies
Driven by Science & Technology
Methodology for GHG Footprint Quantification (ISO/TS 19870)

Source: Hydrogen Council.
Figure 2
Hydrogen deployment growing steadily: status as of January 2023

H₂ production
- 0.8 MT total clean H₂ production
 - of which 0.7 MT low-carbon H₂
- 700 MW (+30% YoY)
 - electrolysis capacity installed

Manufacturing capacity
- 8.8 GW (+150% YoY)
 - installed electrolysis mfg. capacity
- 12 GW (+10% YoY)
 - installed FC mfg. capacity

H₂ end-use
- 80,000
 - FCEVs on the road (+30% YoY)
- 130 (+60% YoY)
 - vehicle models launched by OEMs

H₂ infrastructure
- 1.070 (+55% YoY)
 - HRS installed globally
- 120 ammonia terminals available
 - 38 export and 88 import globally

Source: Hydrogen Council, 2023.
Figure 8
Examples of hydrogen supply chain considered in ISO/TS 19870

Source: Hydrogen Council.
Figure 3
Global snapshot: more than 1,040 hydrogen projects announced in 2023

1,046 projects\(^1\)
684 in May 2022

- 112 Giga-scale production
- 553 Large-scale industrial use
- 191 Mobility
- 94 Integrated H\(_2\) economy
- 96 Infrastructure projects
Figure 7

ISO/TC 197 Working Groups and Standards

<table>
<thead>
<tr>
<th>WG</th>
<th>Title</th>
<th>ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>WG1</td>
<td>Liquid hydrogen - Land vehicles fuel tanks</td>
<td>13985 revision</td>
</tr>
<tr>
<td>WG35</td>
<td>Liquid hydrogen - Land vehicle fueling protocol</td>
<td>13984 revision</td>
</tr>
<tr>
<td>WG27</td>
<td>Hydrogen fuel quality</td>
<td>14687 revision</td>
</tr>
<tr>
<td>WG29</td>
<td>Basic considerations for the safety of hydrogen systems</td>
<td>TR15916 revision</td>
</tr>
<tr>
<td>WG5</td>
<td>Gaseous hydrogen land vehicle refuelling connection devices (up to and above 120 g/s flow)</td>
<td>17268-1, -2 rev.</td>
</tr>
<tr>
<td>WG36</td>
<td>Gaseous hydrogen land vehicle refuelling connection devices – Cryo-compressed H2 gas</td>
<td>17268-3</td>
</tr>
<tr>
<td>WG19</td>
<td>Gaseous hydrogen fueling station – Dispensers</td>
<td>19880-2</td>
</tr>
<tr>
<td>WG21</td>
<td>Gaseous hydrogen fueling station – Compressors</td>
<td>19880-4</td>
</tr>
<tr>
<td>WG22</td>
<td>Gaseous hydrogen fueling station – Hoses</td>
<td>19880-5</td>
</tr>
<tr>
<td>WG23</td>
<td>Gaseous hydrogen fueling station – Fittings</td>
<td>19880-6</td>
</tr>
<tr>
<td>WG31</td>
<td>Gaseous hydrogen fueling station – O-rings</td>
<td>19880-7</td>
</tr>
<tr>
<td>WG28</td>
<td>Gaseous hydrogen fueling station – Hydrogen quality control</td>
<td>19880-8</td>
</tr>
<tr>
<td>WG33</td>
<td>Gaseous hydrogen fueling station – Sampling for fuel quality analysis</td>
<td>19880-9</td>
</tr>
<tr>
<td>WG18</td>
<td>Gaseous hydrogen land vehicle fuel tanks and TPRDs</td>
<td>19881, 19882 rev.</td>
</tr>
<tr>
<td>WG15</td>
<td>Cylinders and tubes for stationary storage</td>
<td>19884</td>
</tr>
<tr>
<td>WG24</td>
<td>Gaseous hydrogen – Fuelling protocols for hydrogen-fuelled vehicles</td>
<td>19885-1, -2, -3</td>
</tr>
<tr>
<td>JWG30</td>
<td>Gaseous hydrogen land vehicle fuel system components</td>
<td>19887</td>
</tr>
<tr>
<td>WG34</td>
<td>Hydrogen generators using water electrolysis – Industrial, commercial, and residential applications</td>
<td>22734-1 revision</td>
</tr>
<tr>
<td>WG32</td>
<td>Hydrogen generators using water electrolysis – Test protocols for performing electricity grid services</td>
<td>TR22734-2</td>
</tr>
</tbody>
</table>

Source: Hydrogen Council.
Next steps (in collaboration with EGRM)

• Develop specifications for the application of the United Nations Framework Classification for Resources (UNFC) and the United Nations Resource Management System (UNRMS) to hydrogen projects and production technologies
• Establish a taxonomy on hydrogen based on a life cycle analysis (LCA) approach
• Work towards developing a Guarantee of Origin for Hydrogen (GOH)
• Develop pilot hydrogen production projects applying UNRMS principles
UNECE Hydrogen Task Force

Thank you!

THE VIEWS EXPRESSED ARE THOSE OF THE AUTHOR AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE UNITED NATIONS.