UK ICE-SRM
The Circular Economy
Delivering a sustainable future

Nick MacInnes
Program Lead, Circular Economy & Resource Security
Office of the Chief Scientist

Lynsay Blake
Head of Science and Evidence
Resources & Waste

Department for Environment Food & Rural Affairs

RESOURCE MANAGEMENT WEEK 2024
Philosophy: Sustainable Energy

Carbon emissions are the rate limiter

- **Priorities**: Carbon & GHG emissions, natural capital usage, resource use

- **Short term. Downstream**: Reducing the need for energy by promoting low carbon recycling - circular materials.

- **Mid-term. Core**: Supporting green transition by developing the sustainable supply of critical minerals.

- **Long-term. Upstream**: Reducing the need for energy through ‘keeping products in circulation for longer at their highest value point’. Reuse and repair – the circular economy.
Exeter Circular Economy (CE) Data Observatory. Delivering live, consistent, reproducible data streams mapping the flow of products & materials (Lysaght, Zils, Hopkinson)

Swansea: Enhanced metal sorting to promote circularity of existing material and thereby spare the earths existing resources (Pleydell-Pearce).

Brunel: Improving the durability metals and developing repair technology that will keep metal components in circulation at their highest value point for longer (Cantor, Fan).

UCL: Tracking the lifecycle of materials in construction and thereby highlight areas where reuse can occur (Stegemann).

British Geological Survey: Identification of critical and priority minerals across there complete life cycle, from extraction to reuse, recovery to disposal (Bide).

Exeter Critical Minerals Centre: Sustainable primary extraction and secondary circulation of critical minerals to support green transition (Ward).
UK ICE-SRM: Delivery

Diffusion of Innovation

- Key centres are experienced in data, innovation, policy.
- Supporting UK transition to sustainable resource use.
- Key outputs directly applicable to the UK, EU, UNECE and beyond.
- Waste management is a global business, cross boundary shipments. Solutions are global.
- UNECE ideal delivery mechanism to enhance uptake of innovation across the region.
- Quantifying the ‘missing link’.
- Supporting UNRMS
 - Information framework and methodology
 - Developing the system and delivering the innovation to manage the life cycle of resources
Example: Brunel (Brain Cantor, Zhongyun Fan)

Innovation: Keeping products in circulation

- Extruded austenitic stainless steel 316L
- Low cycle fatigue.
 - 3000 cycles
- Electrical pulse treatment (EPT)

- Experimental stress in stainless steel producing hairline fractures.
- Repair by electrical pulse treatment.
- Potential to repair steel components in situ.
The UK, EU and UNECE situation

Applications

- Commitments in the UK Resources & Waste Strategy
 - Double in resource productivity by 2050
 - Can help us move towards zero avoidable waste by 2050
 - Can help us move towards zero avoidable plastic waste by 2042
 - Eliminate waste crime and high risk illegal waste sites by 2042

- UK challenges are also EU & UNECE challenges

The UK, EU and UNECE situation

Delivery

- Appointment of 6 fellows to support delivery of a Circular Economy Data Observatory.
 - Data collection critical.
 - Waste is a business, if business can see a waste feedstock they will capitalise, rPET, paper/card, glass, WEEE, batteries, textiles.
 - Data allows us to model the impact of policy tools prior to introduction, plastic tax, EPR (paper, card, glass)
 - Data allows us to measure the success of policy: pre policy then post policy introduction
 - Solutions for the UK waste environment directly transposable to the EU and UNECE regions.
 - Waste companies operating in the UK also operate across the UNECE region.
Example: Exeter Data Observatory (Hopkinson, Zils, Lysaght)

Circular Plastics

- Application of system dynamics
- At multiple levels:
 - County
 - Regional
 - National
- Identifying
 - Material type
 - Product type
Aggregating: Leaked plastic streams with annual leakage Value

- **£75 Million potential lost value**

Visibility gives opportunity

- **Start up business already capitalising**

Supporting UNRMS

Example: Exeter Data Observatory (Hopkinson, Zils, Lysaght) **Circular Plastics**

<table>
<thead>
<tr>
<th>Material</th>
<th>Annual Flow Quantity (t)</th>
<th>Material Price in £/t</th>
<th>Total material value (Mio £)</th>
<th>Leakage ratio (%)</th>
<th>Total value leakage (Mio £)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastics_general</td>
<td>19,539</td>
<td>705</td>
<td>13,8</td>
<td>97</td>
<td>13,4</td>
</tr>
<tr>
<td>PET</td>
<td>15,750</td>
<td>234</td>
<td>3,7</td>
<td>99</td>
<td>3,6</td>
</tr>
<tr>
<td>PP</td>
<td>14,584</td>
<td>620</td>
<td>9,0</td>
<td>89</td>
<td>8,0</td>
</tr>
<tr>
<td>LDPE</td>
<td>11,731</td>
<td>508</td>
<td>6,0</td>
<td>90</td>
<td>5,4</td>
</tr>
<tr>
<td>PA_Nylon</td>
<td>11,241</td>
<td>1,417</td>
<td>9,0</td>
<td>87</td>
<td>2,7</td>
</tr>
<tr>
<td>HDPE</td>
<td>9,055</td>
<td>612</td>
<td>5,5</td>
<td>94</td>
<td>5,2</td>
</tr>
<tr>
<td>PES</td>
<td>8,314</td>
<td>638</td>
<td>5,3</td>
<td>90</td>
<td>4,8</td>
</tr>
<tr>
<td>PVC</td>
<td>7,742</td>
<td>354</td>
<td>2,7</td>
<td>97</td>
<td>2,7</td>
</tr>
<tr>
<td>PS_XPS</td>
<td>4,888</td>
<td>595</td>
<td>2,9</td>
<td>97</td>
<td>2,8</td>
</tr>
<tr>
<td>Acryl</td>
<td>3,706</td>
<td>1,024</td>
<td>3,8</td>
<td>91</td>
<td>3,4</td>
</tr>
<tr>
<td>PC</td>
<td>3,154</td>
<td>1,448</td>
<td>4,6</td>
<td>91</td>
<td>1,0</td>
</tr>
<tr>
<td>PS</td>
<td>3,090</td>
<td>595</td>
<td>1,8</td>
<td>99</td>
<td>1,8</td>
</tr>
<tr>
<td>PPS</td>
<td>2,762</td>
<td>1,448</td>
<td>1,8</td>
<td>23</td>
<td>0,2</td>
</tr>
<tr>
<td>PUR</td>
<td>2,534</td>
<td>2,126</td>
<td>5,4</td>
<td>90</td>
<td>4,9</td>
</tr>
<tr>
<td>PS_EPS</td>
<td>2,039</td>
<td>95</td>
<td>0,7</td>
<td>90</td>
<td>12</td>
</tr>
<tr>
<td>Synthetic rubber</td>
<td>1,476</td>
<td>1,028</td>
<td>1,2</td>
<td>98</td>
<td>1,4</td>
</tr>
<tr>
<td>EVA</td>
<td>1,291</td>
<td>964</td>
<td>1,5</td>
<td>94</td>
<td>1,2</td>
</tr>
<tr>
<td>ABS</td>
<td>636</td>
<td>1,063</td>
<td>1,2</td>
<td>95</td>
<td>0,5</td>
</tr>
<tr>
<td>Other</td>
<td>468</td>
<td>3,367</td>
<td>0,7</td>
<td>68</td>
<td>0,4</td>
</tr>
</tbody>
</table>

Total: 124,000 t/y
£87 Million
£75 Million
Conclusion

- Holistic view of sustainable energy
- Change demands upstream and downstream modifications
- Short, long, mid term solutions across a range of material flows
- Delivery of innovation, data collection, policy recommendations.
- Application of UNFC and UNRMS to enable regional and global quantification

If they can see the opportunity they will come
Thank you!

THE VIEWS EXPRESSED ARE THOSE OF MACINNES & BLAKE AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE UNITED NATIONS.