

Global Workshop on Droughts in Transboundary Basins 26-27 February 2024, Geneva

Challenges related to droughts and aquifers and way forward

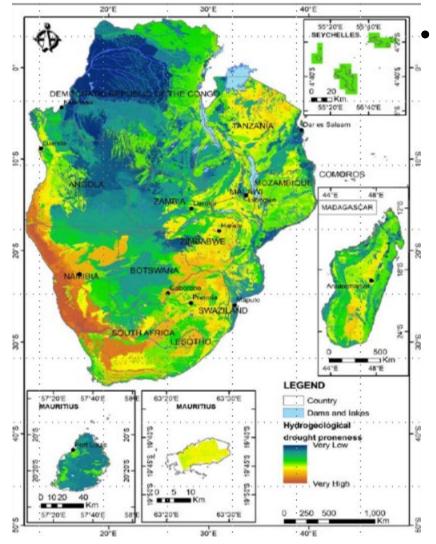
James Sauramba

Executive Director Southern African Development Community Groundwater Management Institute

Bundesamt für Umwelt BAFU Office fédéral de l'environnement OFE Ufficio federale dell'ambiente UFAM Uffizi federal d'ambient UFAM

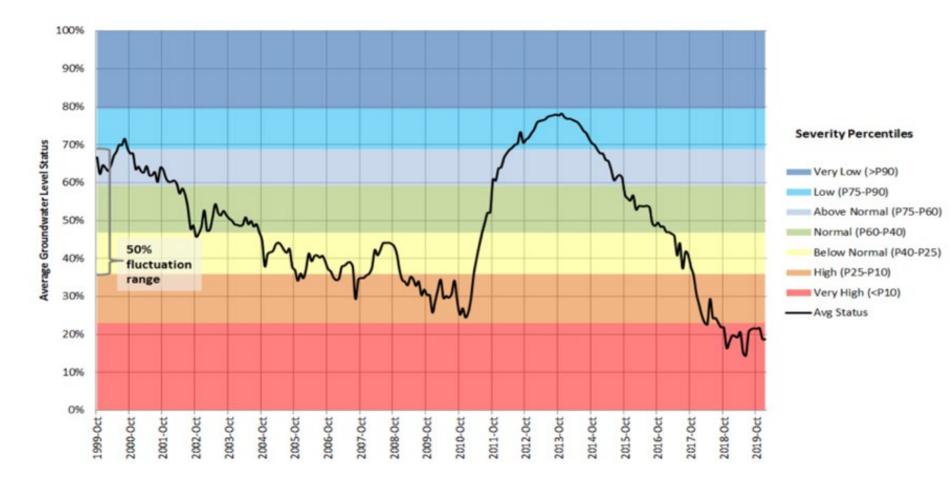
BACKGROUND

- The SADC region is prone to recurring droughts
- The region has undergone severe droughts during the 2015/2016 and 2016/2017 summer rainfall seasons
- In the past, droughts were driven by natural climate variability, but with anthropogenic influences, the characteristics of droughts are changing to include a type of drought that has a rapid onset and short duration
- The droughts in SADC cause problems such as crop failure, food shortages, famine and epidemics
- When groundwater systems are affected by drought, first groundwater recharge and later groundwater levels and groundwater discharge decrease
- Such droughts are called groundwater droughts and generally occur on a time scale of months to years



SADC Member States. Source: SADC, 2019

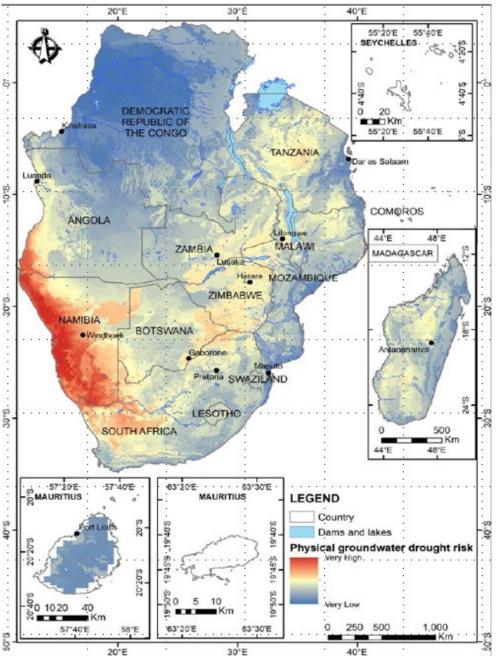
DROUGHT IMPACTS ON GROUNDWATER

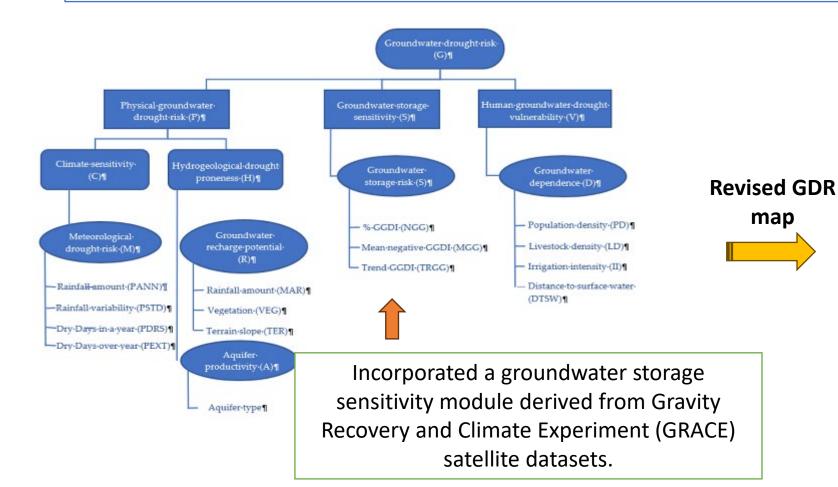

- Inadequate monitoring systems for modelling and validation make it difficult to attribute the following observed changes to climatic changes:
 - groundwater level,
 - storage,
 - discharge, and
 - quality

- Projected impacts of drought on groundwater
 - Groundwater recharge changes
 - Groundwater quantity changes (storage changes)
 - Changes in discharge and groundwater-surface water interaction patterns
 - Groundwater quality degradation
 - Groundwater-dependent ecosystems (GDEs) changes

EXAMPLE OF GROUNDWATER LEVEL DECLINE

GROUNDWATER QUALITY CHANGES


- The effects of drought on groundwater quality require careful monitoring of not only general chemistry but also pollutants of emerging concern
- Sea-water intrusion of coastal aquifers triggered by increased pumping driven by drought
- Mobilisation of naturally occurring salts in the soil negatively affecting groundwater quality


GROUNDWATER DROUGHT RISK MAPPING AND MANAGEMENT SYSTEM (GRIMMS)

- In 2011, the first SADC groundwater drought risk (GDR) map was developed using the GRiMMS algorithm (Villholth et al., 2013)
- The approach employed a composite mapping analysis technique to overlay and mathematically combine several vital characteristics in groundwater drought risk assessment
- However, this did not include an assessment of the variations in groundwater volumes
- SADC-GMI updated and enhanced the SADC GDR map through the use of new, improved datasets, as well as a component that focuses on capturing groundwater storage drought

THE UPDATED GRIMMS ALGORITHM

 20°

ANCOL

VAMIBIA

57°20'E 57°40'E

Km

57°20'E 57'40'E

MAURITUS

Windows BOTSWANA

SOUTHAFRICA

5010

50

٠

66120'E 55140'E

20

55'20'E

DOM:

MOZAMBIQU

ZIMBABWE

SUMTE ESWA

ROORIGUES

63°20'E

63/30%

LEGEND

Country Dams and takes

Hph: 3.44

Physical groundwater risk = 0.34 Human groundwater vulnerability =0.33 Groundwater storage sensitivity =0.33

0 250 500

arèn

Low: 1 Weights:

LESOTH

63°20'E

63°20'E

50 km

_

ATE 45'E NADAGASCAR

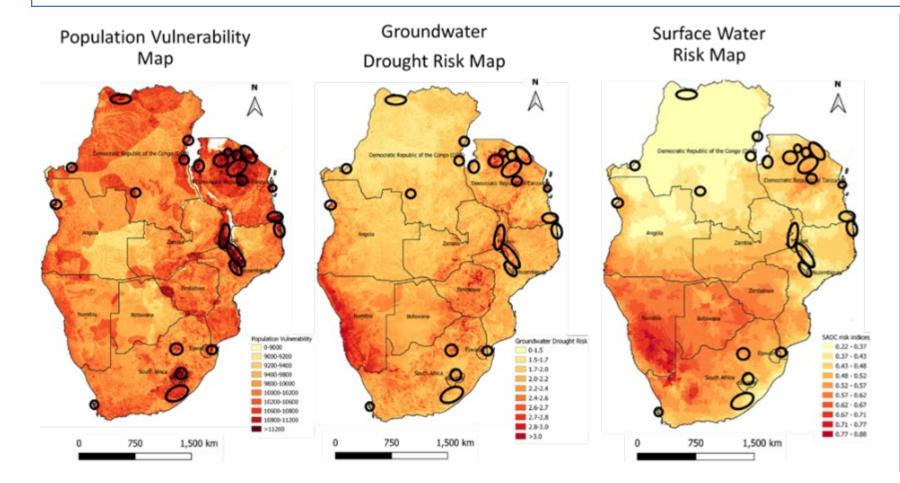
SEVENELLES 🔨 💑

55740°E

41'E CONOROS

44.92

500


Km Km

1.000

48°E

Cooperation in International Waters in Africa

STEP FURTHER - ASSESSMENT OF REGIONAL WATER SUPPLY HOTSPOTS AND INTERVENTIONS

Combined population vulnerability, GDR and surface water risk

٠

- The result of the final calibrated overlay indicated hotspot areas for further investigation
- Identified water infrastructure supply interventions in hotspot areas

Cooperation in International Waters in Africa

CHALLENGES RELATED TO DROUGHTS AND TRANSBOUNDARY AQUIFERS

- Lack of established transboundary collaboration and cooperation mechanisms and plans to govern, monitor and manage the sustainable utilisation of TBAs in a coordinated manner
- Limited technical knowledge and understanding of the baseline status of transboundary groundwater resources and future climate scenarios to inform policy development and investment decision-making at the national and regional levels
- National institutions with mandates to manage groundwater have limited financial, technical and human resource capacity
- Currently, groundwater monitoring in the region is variable, with some countries monitoring boreholes while others lack monitoring altogether:
 - This creates unbalanced monitoring data for a transboundary aquifer, where two or three countries may be extracting groundwater from the same source, which is detrimental to decision-making for sustainable groundwater management and use, particularly for climate change adaptation
- Limited understanding of the impacts of groundwater over-abstraction and catchment degradation on the diversification and improvement of community livelihoods in the face of the changing climate:
 - This, in turn, limits access to climate-resilient measures and infrastructure for the sustainable use of groundwater resources by farmers and agribusinesses to adapt to a changing climate

CONCLUSION

- The need for continuous groundwater monitoring systems in light of climate change and anticipated droughts is critical
- The hypothesis that groundwater can become a buffer during drought requires rigorous testing under local hydrogeological conditions
- This is particularly true considering the expected extended drought periods that may result in an overall reduction in groundwater storage
- Monitoring also becomes critical due to the anticipated groundwater vulnerability and drought risk

Thank you

jamess@sadc-gmi.org

www.sadc-gmi.org

