

UN Regulations No. 78

Limitations and Improvements for S-EPAC

Limitations and Improvements for S-EPAC

Definition:

- EPAC is the acronym for Electrically Power Assisted Cycle, which are non-type approved e-bikes in EU.
- S-EPAC is considered a pedal-driven vehicle of category L1 with auxiliary electric propulsion, which is a type-approved e-bike in EU
 - Specifically, it is a vehicle of subcategory L1e-B according to (EU) 168/2013)

Background:

- In certain conditions, ABS can offer benefit in terms of cycling safety as it optimizes the trade-off between bicycle stability and deceleration
- ABS can work only within the physical limits of the bicycle (friction of tire & road, center of gravity of rider & bicycle, etc.)
- ABS has, as all technical systems, a level of efficiency compared to rider's best performance (pro rider who knows when & how to brake)

Applicable standards:

- ABS is available for both EPAC and S-EPAC,. hence UNECE R78 is mandatory for S-EPAC
- Current design of the UNECE R78 targets ABS technology on powered two wheelers (PTWs) such as mopeds and motorcycles which have different physical limits (cf. slide 2)

Issue:

• The center of gravity (CoG) of S-EPACs combined with the level of efficiency of every ABS does not fit to the braking test "Stops on high friction surface" (chapter 9.3) which includes a vehicle independent deceleration threshold of 6.17m/s² (cf. slide 2)

Proposal:

• Changing the deceleration threshold definition from a vehicle independent one to a vehicle dependent one as in braking test "Stops on low friction surface" (chapter 9.4) enables a better fit of UNECE R78 to S-EPACs (cf. slide 3)

A Standard made for Motorcycles and Mopeds

Discussion points:

- The deceleration threshold of 6.17m/s² on high friction surface in UN R78 does not fit for bicycles physics (geometry, center of gravity, etc.)
- A brake efficiency of 100% is impossible in comparison to the rider's best values due to the working principle of ABS
- An ABS efficiency of 80-90% can be rated as very good and leads to a significant increase of stability and hence safety of the bike

Fig. 2. CG positions of motorized vehicle, motor cycle, electric bicycle Image sources: Daimler, Yamaha, Merida

Theoretical deceleration for rear wheel lift-up [m/s]²

TABLE I
DRIVING DYNAMICS PARAMETERS BASED ON [4]

Symbol	Quantity	Vehicle	Motor Cycle	Electric Bicycle
\overline{m}	vehicle mass in kg	1500	275	25
Δm	additional load in %	+33	+45	+83
l	wheelbase in m	2.7	1.5	1.1
$l_{\mathtt{F}}$	distance CG to front	1 (37)	0.8 (54)	0.7 (61)
l_{R}	wheel in m (and %) distance CG to rear wheel in m	1.7 (63)	0.7 (46)	0.4 (39)
h	height of CG to the road surface in m	0.6	0.7	1.1
r	wheel radius in m	0.29	0.28	0.35
$J_{ m yy}$	wheel moment of inertia in kgm²	1.14	0.65	0.16

Needed Change Points for S-EPAC

Chapter

- 9.3. Stops on a high friction surface:
- 9.3.2. Performance requirements

Current version

- a. The stopping distance (S) shall be ≤ 0.0063V² (where V is the specified test speed in km/h and S is the required stopping distance in metres) or the MFDD shall be ≥ 6.17 m/s²; and
- b. There shall be no wheel lock and the vehicle wheels shall stay within the test lane.

Proposal

The stopping distance (S) shall be...

a.1 in general, $\leq 0.0063V^2$ (where V is the specified test speed in km/h and S is the required stopping distance in metres)

or the MFDD shall be $\geq 6.17 \text{ m/s}^2$; or

a.2 in case of pedal-driven vehicles of category L1 with auxiliary electric propulsion, ≤ 0.0056V²/P (where V is the specified test speed in km/h, P is the peak braking coefficient and S is the required

stopping distance in metres)

or the MFDD shall be \geq 6.87 x P, in m/s²; and

b. There shall be no wheel lock and the vehicle wheels shall stay within the test lane.

- Current phrasing in UN R78
- New additions to UN R78

Source: UNECE R78

Exemplary Calculation for 9.3 and 9.4

Current version of UNECE R78:

9.4.2 Performance requirements (Stops on low friction surface)

a. The stopping distance (S) shall be $\leq 0.0056V^2/P$ (where V is the specified test speed in km/h, P is the peak braking coefficient* and S is the required stopping distance in metres)

or the MFDD shall be $\geq 6.87 \text{ x P}$, in m/s²;

Proposal:

9.3.2 Performance requirements (Stops on high friction surface)

The stopping distance (S) shall be...

a.2 in case of pedal-driven vehicles of category L1 with auxiliary electric propulsion, $\leq 0.0056V^2/P$

(where V is the specified test speed in km/h, P is the peak braking coefficient and S is the required stopping distance in metres)

or the MFDD shall be $\geq 6.87 \times P$, in m/s²;

Calculation example:

Calculation of PBC (from arbitrary measurement):

t = 0.76 s **P** = 0.566/0.76 **= 0.75**

MFDD criteria = $6.87 \times 0.75 = 5.15 \text{ m/s}^2$

Comparison with rider's best deceleration**:

rider's best value from same arbitrary measurement: 7.1 m/s²

MFDD criteria / rider's best = $5.15 \text{ m/s}^2 / 7.1 \text{ m/s}^2 = 73\%$

→ The pass criteria for ABS is 73% of rider's best value

Calculation example:

Calculation of PBC (from another arbitrary measurement):

t = 1.3 s P = 0.566/1.3 = **0.43**

MFDD criteria = $6.87 \times 0.43 = 2.95 \text{ m/s}^2$

Comparison with rider's best deceleration**:

rider's best value from same exemplary measurement: 4.0 m/s²

MFDD criteria / rider's best = $2.95 \text{ m/s}^2 / 4.0 \text{ m/s}^2 = 74\%$

→ The pass criteria for ABS is 74% of rider's best value

The Peak Braking Coefficient (PBC) is calculated from the test stop that generates the maximum vehicle deceleration rate, as follows: PBC = 0.566/t, where t = time taken, in seconds, for the speed of the vehicle to reduce from 0.8 Vmax - 20), where Vmax is measured in km/h

Source: UNECE R78

^{*} Calculation of PBC:

^{**} rider's best: mean deceleration from 0,8 Vmax to 0,1 Vmax, best out of 10 measurements without ABS to define a criteria close to the physical limit