

Informal Document **GRPE-90-20-Rev.1** 90th GRPE, 09-12 January 2024 Agenda Item 7 (c)

Tyre Abrasion Study for vehicles of category M & N

Study performed by UTAC on behalf of ACEA / OICA Informal Document GRPE-90-20-Rev.1 90th GRPE, 09 – 12 January 2024 Agenda Item 7.(c) Submitted by OICA

Tyre Abrasion Study for ACEA

90th GRPE

CONTENTS

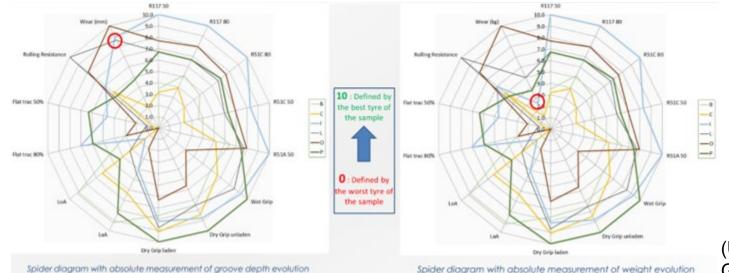
- Tyre Abrasion Study Overview
- WP1 Literature Review
- WP3 Real Life Testing
- WP4 Statistical Analysis
- Conclusions & Next Steps

TYRE ABRASION STUDY OVERVIEW

- Scope:
 - Theoretical and experimental study of influencing factors on tyre wear / abrasion.
- Objectives:
 - Review GRBP TF TA tyre abrasion requirements proposal: test method, interdependency evaluations, etc,
 - Quantify differences in tyre wear / abrasion in relation to vehicle type (ICE vs BEV),
 - Quantify possible differences between OE and Aftermarket tyres by testing tyres with different label values.
- Work Packages & Timing:

	Work Packages	Updated Timing		
WP1	Literature Review	Jun-23 (completed)		
WP2	EPREL Tyre Database Analysis	Aug-23 (completed)		
WP3	Real Life Testing	Aug-23 (completed)		
WP4	Test Results Analysis	Initial Analysis: Oct-23 (completed) Analysis update following additional testing: Jan-24		
WP5	Presentations to GRBP/GRPE:	Interim report: GRBP 78 th session (completed) Final report: GRPE 90 th session / GRBP 79 th session		

WP1 – LITERATURE REVIEW - SCOPE



- Tyre abrasion and mileage for:
 - C1, C2 & C3 tyres,
 - Summer & 3PMSF tyres.
- Aspects considered:
 - Driving behaviour influence on tyre wear / abrasion,
 - Vehicle design influence on tyre wear / abrasion,
 - Tyre performances interdependency,
 - Tyre wear / abrasion testing,
 - Tyre & Road Wear Particles (TRWP) emissions.
- Review included, but was not limited to, relevant studies presented in GRBP TF TA.

WP1 – LITERATURE REVIEW - FINDINGS

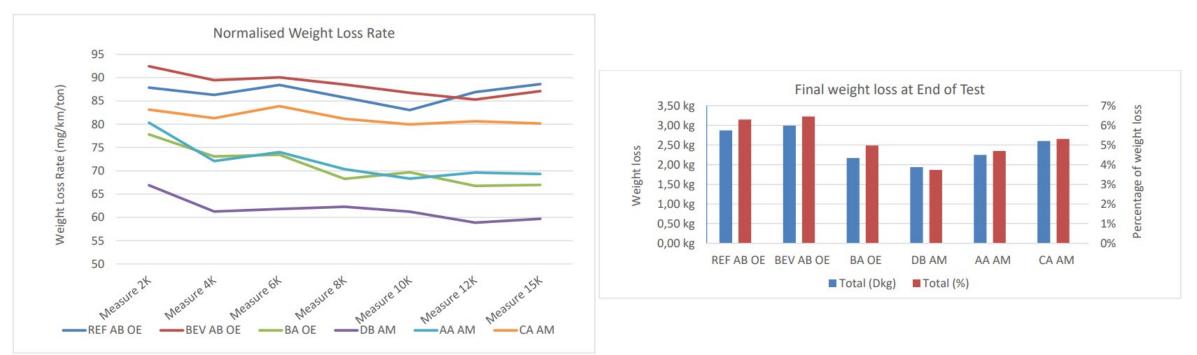
- Tyre performances interdependency:
 - Tyre wear / abrasion vs rolling resistance: good level can be achieved for both performances, depending on:
 - Strategy chosen during tyre development,
 - Type of tyre considered (ie: eco vs high performance / sport).
 - Tyre wear / abrasion vs rolling noise: good level can be achieved for both performances, depending on:
 - Strategy chosen during tyre development,
 - Type of tyre considered (ie: eco vs high performance / sport).
 - Tyre wear / abrasion vs safety: challenging to achieve good level for both performances:
 - Investments required in development and implementation of innovative technical solutions.

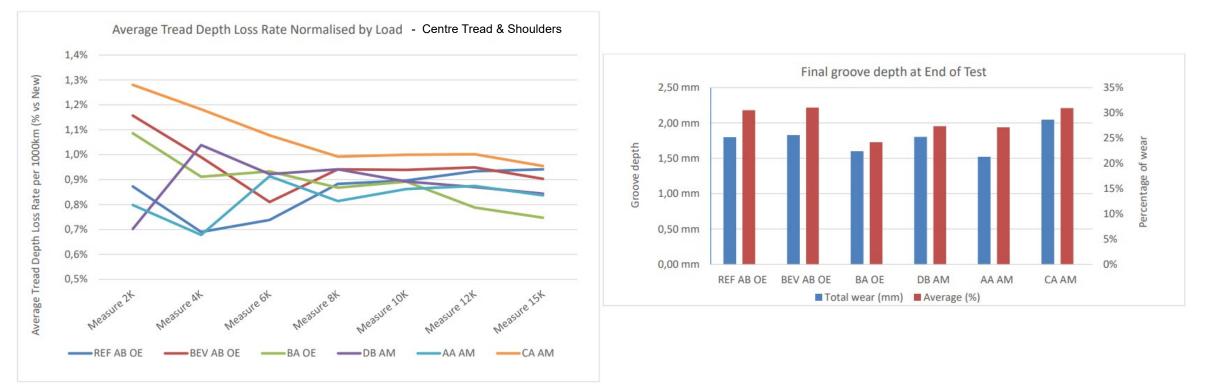
(UTAC, TA-03-04 OICA GRBP-75-19-Rev.1)

- Objectives:
 - Quantify differences in tyre wear / abrasion in relation to:
 - Vehicle type: ICE vs BEV,
 - Tyre type: OE vs aftermarket tyres with different label values.
- Vehicles selection:
 - Scope: BEV & ICE vehicles from same model platform,
 - Vehicles: 1 x BMW iX1 xDrive (BEV) vs 5 x BMW X1 (ICE).
- Tyres selection:
 - Scope: C1 summer tyres,
 - Tyre size: 245/45R19 102 Y,
 - Tyre labels (rolling resistance / wet grip):
 - AA (aftermarket, best label combination available, eco tyre for EV),
 - AB (OE homologated, eco tyre),
 - BA (OE homologated, comfort tyre),
 - CA (aftermarket, best-selling based on analysis of French tyre distributors websites, High Performance tyre),
 - DB (aftermarket, worst label combination available, High Performance tyre),
 - Tyres tested before tyre wear test to check wet grip and rolling noise label values.
 - Start of Production: between 23/20 and 29/22
 - DOT: between 20/22 and 19/23

Circuit:

- Specifications as close as possible to TADG-ORV Test Method proposal,
- Open road circuit around UTAC Mortefontaine site (Northern France),
- Compatible with BEV range & charging constraints.
- Note: acceleration levels being checked vs calculation method in TADG-ORV Test Method proposal.
- Test Method:
 - Test procedure as close as possible to TA DG-ORV Test Method proposal,
 - Main differences with TADG-ORV Test Method proposal:
 - 1 double convoy: 3 + 3 vehicles mixing ICE and BEV to limit test time & cost,
 - Reference (REF): BMW X1 (ICE) fitted with AB OE homologated Tyre,
 - Total running distance: 15,000km (8 weeks),
 - Measurement parameters: tyre tread depth and mass loss.
 - Intermediate measurements every 2,000km.
- Timing: July August 2023
- Note: Rear Left tyre on REF replaced after 6,000km due puncture.


Circuit characteristics					
Length (km)	390				
City (km / %)	59 km / 15 %				
Road (km / %)	195 km / 50 %				
Highway (km / %)	137 km / 35 %				
Average speed (km/h)	93,13				
Standard deviation speed	32				
Standard deviation longi accel (m/s ²	0,68				
Standard deviation lat accel (m/s ²)	0,87				



• Average weight loss rate per vehicle normalised by vehicle load:

- REF AB OE: Rear Right tyre counted twice due to Rear Left tyre replacement during testing,
- Vehicle weight influence on weight loss rate observed → Change in test results when normalised by vehicle load,
- Similar weight loss rate between ICE and BEV when tested in same convoy and results normalised by vehicle weight.

• Average tread depth loss rate per vehicle normalised by vehicle load 15,000km:

- Vehicle weight influence on tread depth loss rate observed → Change in test results when normalised by vehicle load,
- Longer test distance required to get stabilized tread depth loss rate compared to weight loss rate.

WP4 – Statistical Analysis – Data Exploration

• Tyre Labels Value and Tyre Test Results:

Tyre	RR Label	WG Label	Noise Label	WG Index ⁽¹⁾	Sound Level (dB(A)) ⁽²⁾	Weight Loss Rate (mg/km/ton) ⁽³⁾	Tread Depth Loss Rate (mm/1000km/ton) ⁽⁴⁾
AA - AM	А	А	A (69dB)	1,56	70,25	69,321	0,047
REF AB – OE ⁽⁵⁾	А	В	A (69dB)	1,48	71,20 (B)	88,620	0,055
BEV AB – OE ⁽⁶⁾	А	В	A (69dB)	1,48	71,20 (B)	87,110	0,053
BA – OE	В	А	B (70dB)	1,70	72,52	66,974	0,049
CA – AM	С	А	B (72dB)	1,56	73,82	80,161	0,063
DB – AM	D	В	B (70dB)	1,58 (A)	72,11	58,704	0,056

• Notes:

⁽¹⁾ Wet Grip Index in new state as per Annex 5 to UNR117.

⁽²⁾ Sound Level only after temperature correction according to §4.3 of Annex 3 to UNR117.

⁽³⁾ Average Weight Loss Rate per vehicle normalised by vehicle load after 15,000km.

⁽⁴⁾ Average Tread Depth Loss rate (centre tread and shoulders) per vehicle normalised by vehicle load after 15,000km.

⁽⁵⁾ AB – OE tyre fitted to reference Internal Combustion Engine (ICE) vehicle for tyre abrasion / wear testing.

⁽⁶⁾ AB – OE tyre fitted to Battery Electric Vehicle (BEV) for tyre abrasion / wear testing.

WP4 – Statistical Analysis – Data Exploration

Global Tyre Performance – Radar Chart: Label RR 10: Defined by the best tyre of the sample Normalised Wet Grip Index Tread Depth Loss Rate 15k **1** : Defined by the worst tyre of the sample Normalised Sound Level Weight Loss Rate 15k DB AM BEV AB OE - AA AM REFABOE - BA OE CA AM Eco Eco Comfort High perf Eco High perf

- Observations aligned with WP1
 Literature Review Findings:
 - Literature Review Findings:
 - No clear correlation highlighted with weight loss rate or tread depth loss rate.
 - Good tyre in RR can be good for tread depth loss rate.
 - Good tyre in Noise can be good for tread depth loss rate.
 - Good tyre in Wet Grip can be good for tread depth loss rate and weight loss rate.
 - Weight loss rate and tread depth loss rate not correlated.
- No clear picture to be drawn between:
 - OE vs AM tyres.
 - Eco vs Comfort vs High Performance tyres.
- Tyres cornering stiffness to be measured to confirm tyres type and influence of handling performance on global tyre performance.

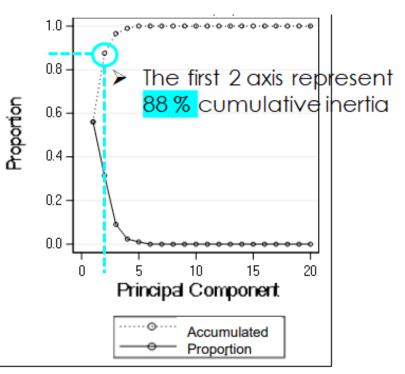
WP4 – Statistical Analysis – Correlation Analysis

- Significant Relationship between variables:
 - Correlation between 2 characteristics if Pearson correlation coefficient is significant (probability value, p-value < 0,05).
- Variables considered:
 - RR label,
 - Wet Grip label,
 - Noise label,
 - RR / Wet Grip / Noise label,
 - Wet Grip Index,
 - Sound Level,
 - Normalised Weight Loss Rate:
 - per Vehicle / Front / Rear,
 - after 2k / 4k / 6k / 8k / 10k / 12k / 15k km,
 - Normalised Tread Depth Loss Rate:
 - per Vehicle / Front / Rear,
 - after 2k / 4k / 6k / 8k / 10k / 12k / 15k km,
 - Centre tread grooves (3 & 4) / Intermediate tread grooves (2 & 5) / shoulders (1 & 6).

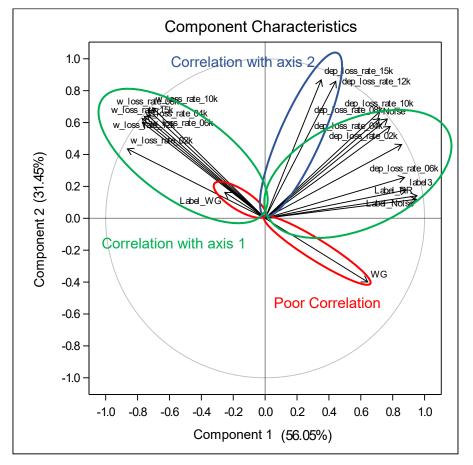
		1.5 1.7		60 90	0	.0300 0.042	25 (0.060 0.085	5
-	Label_R R	0 0 0 0 0	· · ·	• • • •	0 0 0 0 00	· · ·	0 0 0 0 0	° ° °	- 4.0 - 2.5 - 1.0
1.7 - 1.6 - 1.5 -	• • • •	WG	° °°°	° ° ° °	0 0 0 0 00	° ° ° °	0 0 0 0 0	° °°°°	• – – • • • • –
-	° °	0 0 0	Noise	• • • •	0 00 0	° ° ° ° ° °	0 0 0 0	°°° °°°	• • - 74 • • - 72 • - 70
90 - 60 -	· • • • • • • • • • • • • • • • • • • •	0 0 0 0 0	° ° °	w_loss_r ate_15k	0 0 0 0 0	0 0 0 0	• • • •	° ° °	• • -
-	°	° 8°°°	° °°	° ° °	dep_loss _rate_F _15k	。 。 。	°	°° °°	• • • • • • • • 0.085 • • • • • • • • • • • 0.065
0.0425 - 0.0300 -	0 0 0 0	0 0 0 0 0 0	° ° °	° °°	0 0 0 0 0	dep_loss _rate_R _15k	• • • • •	0 0 0 0 0	0 0 0 0 0 00 —
-	0 8 0	0 0 8 0	9° 0	°°°°	0 0 0 0	。 。 。 。	dep_loss _rate_F1 5k_sho	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	• • • - 0.060 • • • • - 0.045
0.085 - 0.060 -	8 0 0	8 °	8 ° °	° ° °	0 0 0	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	0 9 0 0	dep_loss _rate_F1 _5k_int	
-		° ° '		°°		° °		°°°	dep_loss_0.11 _rate_F1 5k_cen_0.09
	1 4		70 72 74		0.065 0.085		0.045 0.060	1	0.09 0.11

Scatterplot matrix for tire data

WP4 – Statistical Analysis – Correlation Analysis



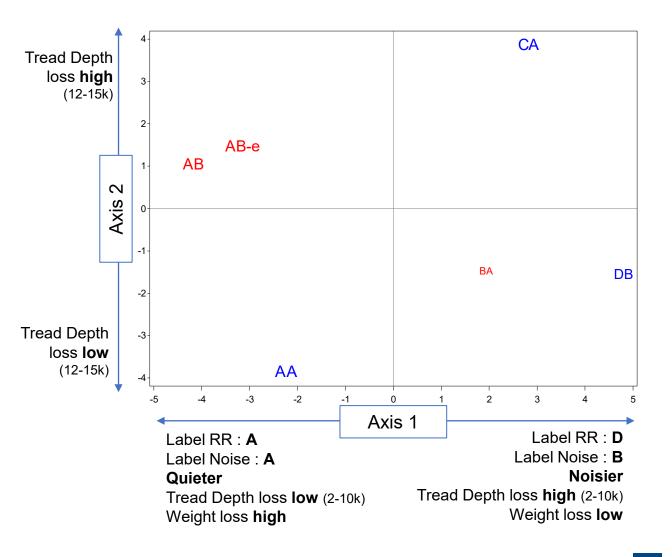
	Variable 1	Variable 2	Pearson Correlation coefficient example	P-value example
1	Noise	Tread depth loss rate (2k/4k/6k/8k/10k/12k, Front 15k shoulder)	Front 15k shoulder: 0.95	Front 15k shoulder: 0.003
2	Label (RR + WG + Noise) (AAA:3, AAB =4,)	Tread depth loss rate (2k / 8k, Rear 15k shoulder)	Rear 15k shoulder: 0.93	Rear 15k shoulder: 0.008
3	Label Noise (A=1, B=2)	Weight loss rate (Rear 2k / 6k)	Rear 2k: -0.89	Rear 2k: 0.017
4	Label Noise (A=1, B=2)	Tread depth loss rate (2k / 4k / 6k / 8k / 10k, Rear 15k shoulder)	6k: 0.85	6k: 0.031
5	Label RR (A=1, B=2)	Weight loss rate (2k, Rear 2k / 6k)	Rear 2k: -0.87	Rear 2k: 0.026
6	Label RR (A=1, B=2)	Tread depth loss rate (2k, Rear 15k shoulder)	2k: 0.87	2k: 0.026


- Correlation between RR label and weight loss rate to be confirmed with RR measurements as per R117.
- No correlation found between Noise measurement and weight loss rate.
- No correlation found between Wet Grip and weight loss rate or tread depth loss rate.

WP4 – Statistical Analysis – Principal Component Analysis

- Principal Component Analysis (PCA):
 - Mathematical procedure used to convert a set of possibly correlated variables into a smaller set of uncorrelated variables called principal components.
 - PCA used here to reduce a set of 20 characteristics (label, RR, Wet Grip, Noise, Tread Depth Loss Rate (after 2k / 4k / 6k / 8k / 10k / 12k / 15k km), Weight Loss Rate (after 2k / 4k / 6k / 8k / 10k / 12k / 15k km) to 2 variables.
- PCA results:
 - Inertia of the first dimensions:
 - Shows if strong relationships between variables,
 - Suggests the number of dimensions to be studied.
 - First 2 components of PCA express 88% of the total dataset inertia
 → 1st plane well represents data variability.

- PCA Results:
 - Circle of correlations: projection of the cloud of variables on the level of the main components.
 - The variables close to the circle are well represented, those close to the origin are poorly represented.



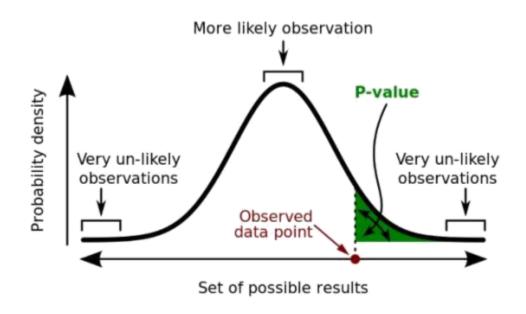
Part of inertia	56%	31%	9%
	Axis 1	Axis 2	Axis 3
Depth loss rate (2-10k)	~ 0.85	~ 0.46	~ -0.08
Depth loss rate (12-15k)	~ 0.44	~ 0.85	~ -0.08
Weight loss rate (2-15k)	~ -0.86	~ 0.43	~ 0.20
label3	0.88502	0.17721	-0.41404
Label RR	0.94854	0.11917	-0.27238
Label WG	-0.25291	0.16245	-0.90412
Label Noise	0.95283	0.14110	0.18091
WG	0.64342	-0.39953	0.55614
Noise	0.71800	0.62501	0.27369

WP4 – Statistical Analysis – Principal Component Analysis

- PCA Visualisation and Explanation:
 - Trend between Rolling Noise and Tread Depth Loss Rate,
 - Opposition trend between Rolling Noise and Weigh Loss Rate,
 - Opposition trend between Weight Loss Rate and Tread Depth Loss Rate,
 - Different Tread Depth Loss Rate evolution for some tyres after 10,000km.
- Comments on PCA Results Representativeness:
 - PCA can be considered as descriptive method: it summarises the information but does not explain it,
 - Recommended to have a relatively large sample to ensure an optimal statistical power of the analysis: at least a ratio of 10 subjects per variable.
 - With a sample of 6 tyres, trends shown maybe valid for this sample but necessary to remain cautious regarding generalization of interpretations given the representativeness of the tyres' population.

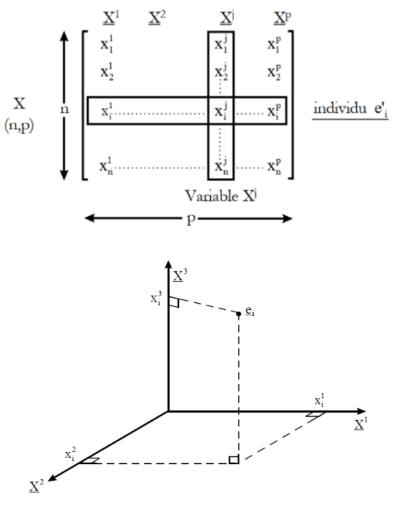
CONCLUSIONS AND NEXT STEPS

- Conclusions:
 - Correlation found between Rolling Noise and Tread Depth Loss Rate after up to 10,000km confirmed by trend shown by PCA,
 - Trends shown by PCA:
 - Quieter Tyre ↔ Higher Weight Loss Rate,
 - Higher Rolling Resistance Label ↔ Higher Weight Loss Rate,
 - Higher Weight Loss Rate ↔ Lower Tread Depth Loss Rate after up to 10,000km.
 - No correlation found between Wet Grip and Weight Loss Rate or Tread Depth Loss Rate.
 - Different tyre tread depth loss rate evolution for some tyres after 10,000km.
 - Analysis based on label values only not conclusive → Need for tyre performance measurements for robust tyre performances interdependency analysis.
 - No clear picture between OE and AM tyres in terms of tyre performances interdependency.
- Next Steps:
 - PCA to be applied to larger set of data available to confirm trends from sample of 6 tyres: Jan-24,
 - Tyres Rolling Resistance to be measured as per R117 to confirm correlation found with RR label: Jan-24,
 - Tyre Cornering Stiffness to be measured to confirm tyre types and influence of handling performance: Jan-24,
 - Statistical Analysis update: Feb-24,
 - Conclusions to be included in study final report presentation to GRBP 79th session.


www.utac.com

ANNEX – CORRELATION ANALYSIS

• P-Value:

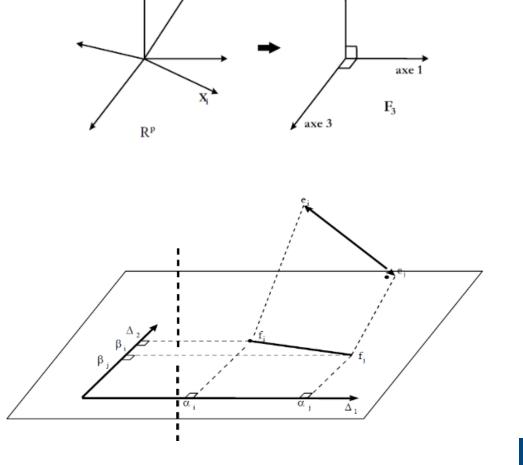

- The p-value or probability value is, for a given statistical model, the probability that, when the null hypothesis is true, the statistical summary would be greater than or equal to the actual observed results.
- In the present case, the null hypothesis is: "there is no correlation between characteristics".
- In other words, if **p-value is low then the null hypothesis is false** and **it can be concluded that there is a correlation**. The admitted threshold value is: 5%.

A **p-value** (shaded green area) is the probability of an observed (or more extreme) result assuming that the null hypothesis is true.

ANNEX – PRINCIPAL COMPONENT ANALYSIS

- Data:
 - n individuals observed on p quantitative variables
 - Individual: element of R^p
 - Variable: element of Rⁿ

- Cloud of individual representation:
 - To each individual noted e_i, a point can be associated in R^p
 - Each variable in table X is associated with an axis of R^p.


ANNEX – PRINCIPAL COMPONENT ANALYSIS

- Cloud of individual representation:
 - Looking for a representation of the n individuals, in a subspace F_k of R^p of dimension k

 \rightarrow Trying to define k new variables linear combinations of the p initial variables that will cause as little information loss as possible.

- As little information loss as possible:
 - F_k will have to be "adjusted" as best as possible to the cloud of individuals: the sum of the squares of the distances from individuals to F_k must be minimal.
 - F_k is the subspace such that the projected cloud has a maximum inertia (dispersion).

 \rightarrow Based on notions of distance and orthogonal projection.

axe 2