List of issues related to all series of amendments to UN Regulation No. 154

GRPE 90th session

Current/amended text based on 02 series (applicable on $00,01,03$ series as well)

6.2. For Level 1A

The fuel consumption values shall be calculated from the emissions of Current text
6.2. For Level 1A

The fuel consumption values shall be calculated from the emissions of hydrocarbons, carbon monoxide, and carbon dioxide using the results of step 6 for criteria emissions and step 7 for CO_{2} of Table $\mathrm{A} 7 / 1$ in case of ICE or of Table A8/6 in case of NOVC-HEV and OVC-HEV.

Currentlamended text based on 02 series (applicable on 00, 01, 03 series as well)

Current text

4c	$\begin{aligned} & \text { Output step } \\ & \text { 4a } \end{aligned}$	$\mathrm{M}_{\mathrm{i}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{a}}, \mathrm{g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, 4 \mathrm{a}}, \mathrm{g} / \mathrm{km}$.	母 $\begin{aligned} & \mathrm{M}_{\mathrm{i}, \mathrm{c}, 4 \mathrm{c}}=\mathrm{M}_{\mathrm{i}, \mathrm{c}, 4 \mathrm{a}} \\ & \mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 4 \mathrm{c}}=\mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 4 \mathrm{a}} \end{aligned}$	$\mathrm{M}_{\mathrm{i}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{c} \text {; }}$ $\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{c}}$
			Calculate fuel efficiency ($\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c} \text { temp }}$) according to paragraph 6.14.1. of Annex B7. 母 $\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c}}=\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c} _ \text {temp }}$	$\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c}}, \mathrm{km} / \mathrm{l}$;

4 c	Output step4a	$\mathrm{M}_{\mathrm{i}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{a}}, \mathrm{g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, 4 \mathrm{a}}, \mathrm{g} / \mathrm{km}$.	\# $\begin{aligned} & \mathrm{M}_{\mathrm{i}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{c}}=\mathrm{M}_{\mathrm{i}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{a}} \\ & \mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{c}}=\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{a}} \end{aligned}$	$\mathrm{M}_{\mathrm{i}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{c} \text {; }}$ $\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{c}, 4 \mathrm{c}}$
			Calculate fuel efficiency ($\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c}}$ temp) according to paragraph 6.14.1. of Annex B7. \# $\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c}}=\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c} _ \text {temp }}$	$\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c}}, \mathrm{km} / \mathrm{l}$;

Currentamended text based on 02 series (applicable on 00, 01, 03 series as well)

Result of a single test.	Output step $4 b$ and $4 c$	$\mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 4 \mathrm{c}}, \mathrm{g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO}, \mathrm{p}, 4}, \mathrm{~g} / \mathrm{km}$.	For Level 1A: ATCT correction of $\mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 4 \mathrm{c}}$ and $\mathrm{M}_{\mathrm{CO} 2, \mathrm{p}, 4}$ in accordance with paragraph 3.8.2. of Annex B6a. For Level 1B: $\begin{aligned} \mathrm{M}_{\mathrm{CO2}, \mathrm{c}, 5} & =\mathrm{M}_{\mathrm{CO2}, \mathrm{c}, 4 \mathrm{c}} \\ \mathrm{M}_{\mathrm{CO} 2, \mathrm{p}, 5} & =\mathrm{M}_{\mathrm{CO}, \mathrm{p}, 4} \end{aligned}$	$\mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 5}, \mathrm{~g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO} 2, \mathrm{p}, 5}, \mathrm{~g} / \mathrm{km}$.
		$\mathrm{M}_{\mathrm{i}, \mathrm{c}, 4 \mathrm{c}}, \mathrm{g} / \mathrm{km}$; $\mathrm{FE}_{\mathrm{c}, 4 \mathrm{c}}, \mathrm{km} / \mathrm{l}$;	Apply deterioration factors calculated in accordance with Annex C4 to the criteria emissions values. FEc,5=FEc4c	$\begin{aligned} & \mathrm{M}_{\mathrm{i}, \mathrm{c}, 5}, \mathrm{~g} / \mathrm{km} \\ & \mathrm{FE}_{\mathrm{c}, 5}, \mathrm{~km} / \mathrm{l} \end{aligned}$

Amended text

5 Result of a single test.	Output step $4 b$ and $4 c$	$\mathrm{M}_{\mathrm{CO2}, \mathrm{c} 4 \mathrm{c}, \mathrm{g}} \mathrm{g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO} 2, \mathrm{p}, 4,} \mathrm{~g} / \mathrm{km}$.	For Level 1A: ATCT correction of $\mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 4 \mathrm{c}}$ and $\mathrm{M}_{\mathrm{CO}, \mathrm{p}, 4}$ in accordance with paragraph 3.8.23. of Annex B6a. For Level 1B: $\begin{aligned} \mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 5} & =\mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 4 \mathrm{c}} \\ \mathrm{M}_{\mathrm{CO} 2, \mathrm{p}, 5} & =\mathrm{M}_{\mathrm{CO} 2, \mathrm{p}, 4} \end{aligned}$	$\begin{aligned} & \mathrm{M}_{\mathrm{CO} 2, \mathrm{c}, 5,} \mathrm{~g} / \mathrm{km} ; \\ & \mathrm{M}_{\mathrm{CO} 2, \mathrm{p}, 5,} \mathrm{~g} / \mathrm{km} . \end{aligned}$
		$\begin{aligned} & \mathrm{M}_{\mathrm{i}, \mathrm{c}, \mathrm{c},} \mathrm{~g} / \mathrm{km} ; \\ & \mathrm{FE}_{\mathrm{c}, 4 \mathrm{c},} \mathrm{~km} / \end{aligned}$	Apply deterioration factors calculated in accordance with Annex C4 to the criteria emissions values. $\mathrm{FEc}, 5=\mathrm{FEc} 4 \mathrm{c}$ 日	$\mathrm{M}_{\mathrm{i}, \mathrm{c}, 5}, \mathrm{~g} / \mathrm{km} ;$ $\mathrm{FE}_{\mathrm{c}, 5}, \mathrm{~km} / \mathrm{l}$;

Current/amended text based on 02 series (applicable on 00, 01, 03 series as well)

$\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}}$ results of a Type 1 test for a test vehicle.	For Level 1A: Output step 6	$\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, 6,6}, \mathrm{~g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{p}, 6}, \mathrm{~g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \text {, declared }}$, g / km.	Alignment of phase values. Paragraph 1.2.4. of Annex B6, and: $\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, 7}=\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, \text { declared }}$	$\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{c}, 7,7}, \mathrm{~g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{p}, 7}, \mathrm{~g} / \mathrm{km}$.
	For Level 1B: Output step 5 Output step 6	Mco2c5.c.5. g / km; Mco2.cs.n. g / km; Mconcss.cdeclared, g / km.	Alignment of phase values. Paragraph 1.2.4. of Annex B6.	

$\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}}$ results of a Type 1 test for a test vehicle.	For Level 1A: Output step 6	$\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, 6}, \mathrm{~g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{p}, 6}, \mathrm{~g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, \text { declared }}$, g / km.	Alignment of phasevalues- to toccording Paragraph_paragraph 1.2.4. of Annex $\mathrm{B6}$ and: $\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{c}, 7}=\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, \text { declared }}$	$\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{c}, 7}, \mathrm{~g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{p}, 7}, \mathrm{~g} / \mathrm{km}$.
	For Level 1B: Output step 5 Output step 6	 $\mathrm{M}_{\cos 2 \operatorname{csin} \mathrm{n} 5, \mathrm{~g}} \mathrm{~km}$; Mco2.cS.c.declared, g / km.	Alignment of phase values= according to Pparagraph 1.2.4. of Annex B6.	$\mathrm{M}_{\text {coozescsph }}$, g/km.

New topic - just editorial

Current/amended text based on 02 series (applicable on 00, 01, 03 series as well)

E/ECEKTRANS/505/Rex3/Addll53/Rev.1/Amend,2

E/ECE/TRANS/505/Rex 3/Addulw3/Rex.1/Amend2

Amended text

Step no.	Source	Input	Process	Output
	Output step 4, Table A8/8 Output step 8, Table A8/8 Output step 6, Table A8/5 Output	nuehti मuvh UTabaseajo UEastecs Micsic. g / km; Mccencsideclured, g / km;	Output in the case of CD is available for each CD test. Output in the case of CS is available once due to CS test averaged values.	yxehy: UFindsaje UEAsules: Micsic. g / km; Mcos.cs.ang $/ \mathrm{km}$: ${ }^{5} \mathrm{CO} 2 \mathrm{Z}$ $(\mathrm{g} / \mathrm{km}) /(\mathrm{Wh} / \mathrm{km})$

Annex B8 - Table A8/9 "g/km" missing, Step 3

Currentamended text based on 02 series (applicable on $00,01,03$ series as well)

Current text

Amended text

3	Output step 1	$\mathrm{M}_{\mathrm{CO} 2 \mathrm{CD}, \mathrm{i}} \mathrm{g} / \mathrm{km}$; $\Delta \mathrm{E}_{\text {beessid }}$ Wh; $\mathrm{d}_{\mathrm{j}}, \underline{\mathrm{km}}$; $\mathrm{n}_{\text {xehe }}$: $\mathrm{R}_{\mathrm{cdc}}, \mathrm{km}$ $\mathrm{M}_{\mathrm{CO} 2 \mathrm{CS} . \text { declared, }} \mathrm{g} / \mathrm{km}$; 	Calculation of equivalent all-electric range according to paragraphs 4.4.4.1. and 4.4.4.2. of this annex, and actual charge-depleting range according to paragraph 4.4.5. of this annex. Output is available for each CD test. $\mathrm{R}_{\mathrm{CDAA}}$ shall be rounded according to paragraph 6.1.8. of this Regulation to the nearest whole number.	EAER, km; EAER, km; RcDA, km.

3	Output step 1	$\mathrm{M}_{\mathrm{CO} 2 \mathrm{CD} \mathrm{Cl}_{2}, \mathrm{~g} / \mathrm{km} \text {; }}$ Δ E $_{\text {beEssid }}$ Wh; $\mathrm{d}_{\mathrm{j}}, \mathrm{km}$; $\mathrm{n}_{\text {uebhi }}$ $\mathrm{R}_{\mathrm{cc} \text { c. }}$, km $\mathrm{M}_{\mathrm{CO} 2 \mathrm{CSS} \text {.declared, }} \mathrm{g} / \mathrm{km}$; Mcozcsung g/km:	Calculation of equivalent all-electric range according to paragraphs 4.4.4.1. and 4.4.4.2. of this annex, and actual charge-depleting range according to paragraph 4.4.5. of this annex. Output is available for each CD test. $\mathrm{R}_{\mathrm{cc} a \mathrm{~A}}$ shall be rounded according to paragraph 6.1.8. of this Regulation to the nearest whole number.	EAER, km; EAER ${ }_{p}$, km; $\mathrm{R}_{\mathrm{cd}} \mathrm{A}, \mathrm{km}$.

Currentamended text based on 02 series (applicable on $00,01,03$ series as well)

Current text

Amended text

Current/amended text based on 02 series (applicable on $00,01,03$ series as well)

Current text

Amended text

```
    Verification of CoP on charge-depleting electric energy consumption of
    OVC-HEVS
(...)
6.4. The procedure for the final COP test results is shown in Table App1/1
```


Table App1/1

Procedure for calculating final COP test results
(CO_{2} applicable for Level 1A only and FE applicable for Level 1B only)
6. Verification of CoP on charge-depleting electric energy consumption of OVC-HEVs
(...)
76.4.

The procedure for the final COP test results is shown in Table App1/1.

Table App1/1

Procedure for calculating final COP test results
(CO_{2} applicable for Level 1A only and FE applicable for Level 1B only)

Justification:

- Table App1/1 currently under paragraph 6.4. which is limited only to EC of OVC-HEVs
- But Table App1/1 covers ALL vehicles
- Paragraph number to be changed in 7.

Current/amended text based on 03 series (applicable on 01 series as well)

Current

 textFor 3-phase WLTP test;

$$
\mathrm{EAER}=\left(\frac{\mathrm{M}_{\mathrm{CO2,CS}, \text { declared }}-\mathrm{M}_{\mathrm{CO} 2, \mathrm{CD}, \mathrm{avg}}}{\mathrm{M}_{\mathrm{CO2}, \mathrm{CS}, \text { declared }}}\right) \times \mathrm{R}_{\mathrm{CDC}, \mathrm{ave}}
$$

For 3-phase WLTP test;

$$
\mathrm{EAER}=\left(\frac{\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \text { declared }}-\mathrm{M}_{\mathrm{CO2,CD,avg}}}{\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \text { declared }}}\right) \times \mathrm{R}_{\mathrm{CDC} \text {,aws }}
$$

Amended text

Justification:

- In 02 series, the formula is correct
(see below)
For Level 1B;

$$
\mathrm{EAER}=\left(\frac{\mathrm{M}_{\mathrm{CO2,CS}, \text { declared }}-\mathrm{M}_{\mathrm{CO} 2, \mathrm{CD}, \mathrm{avg}}}{\mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \text { declared }}}\right) \times \mathrm{R}_{\mathrm{CDC}}
$$

New topic - clarification

Amended text based on 02 series (applicable on 00, 01, 03 series as well)
> (k) is the number of phases driven until the end of the transition cycle according to paragraph 3.2.4.4. of this trans
anne

> In the case that the interpolation method is applied for $\mathrm{CO}_{2}, \mathrm{k}$ shall be the number of phases driven up to the end of the transition cycle of vehicle L $\mathrm{n}_{\text {veh_L }} \mathrm{L}$ - for the application of both equations of this paragraph
> If the transition cycle number driven by vehicle $\mathrm{H}, \mathrm{n}_{\mathrm{veh}}^{H}$, and, if applicable, by an individual vehicle within the vehicle interpolation family $n_{v e h_{\text {ind }}}$ is lower than the transition cycle number driven by vehicle $\mathrm{L}, \mathrm{n}_{\text {veh }} \mathrm{L}$, the confirmation cycle of vehicle H and, if applicable, an individual vehicle shall be included in the calculation. The CO_{2} emission of each phase of the confirmation cycle shall then be corrected to an electric energy consumption of zero $\left(E C_{D C, C D, j}=0\right)$ by using the CO_{2} correction coefficient according to Appendix 2 to this annex.

Justification:

- Special provision should only apply to weighted CO_{2} but could be read as it also applies on criteria emissions
- Blue underlined text and yellow underlined text are in contradiction
- Furthermore, $\mathrm{M}_{\mathrm{i}, \text { weighted }}$ is not interpolated
\rightarrow Proposal: delete yellow underlined text

Amended text based on 02 series (applicable on 00, 01, 03 series as well)

3.5 .7 .3 .2.	All Electric Range AER and Equivalent All Electric Range for OVC- HEVs and OVC-FCHVs (as applicable)
3.5 .7 .3 .2 .1.	Vehicle high: AER: ... km, EAER: ... km
3.5 .7 .3 .2 .2.	Vehicle low (if applicable):AER: ... km, EAER: ... km
3.5 .7 .3 .2 .3.	Vehicle M (if applicable): AER: . . . km, EAER: ... km

Justification:

- All declared values are part of information document
- To test report and certificate, it has been added but in information document missed

Comment to EU-COM:

- To avoid different information documents in 1151 and UN-R154, information document should be deleted from 1154, just reference to UN-R154

Amended text based on 02 series (applicable on 00, 01, 03 series as well)
$\mathrm{M}_{\mathrm{CO} 2, \text { weighted }}=\left(\sum_{j=1}^{k} U F_{j}\right)_{\text {ave }} \times \mathrm{M}_{\mathrm{CO}, \mathrm{CD}, \text { declared }}+\left(1-\left(\sum_{j=1}^{k} U F_{j}\right)_{\text {ave }}\right) \times \mathrm{M}_{\mathrm{CO}, \mathrm{CS}, \mathrm{declared}}$
where:
$\mathrm{M}_{\mathrm{CO} \text { 2,weighted }} \quad$ is the utility-factor weighted charge-depleting CO_{2} emission, g / km.
$\mathrm{M}_{\mathrm{CO} 2, \mathrm{CD} \text {,declared }}$ is the declared charge-depleting CO_{2} emission $\mathrm{M}_{\mathrm{CO}, \mathrm{CS} \text {,declared }}$ $\left(\sum_{j=-1}^{k} U F_{f}\right)_{\text {ave }}$ according to Table A8/8, step no. $14, \mathrm{~g} / \mathrm{km}$.
Amended text
is the declared charge-sustaining CO_{2} emission according to Table A8/5, step no. $7, \mathrm{~g} / \mathrm{km}$.
is the average of the sum of utility factors of each eharge-depleting test.
is the index number of the considered phase;
is the number of phases driven until the end of the transition cycle according to paragraph 3.2.4.4. of this annex.

Step no.	Source	Input	Process	Output
$\begin{gathered} \hline \text { For Level 1A, } \\ 6 \end{gathered}$	Output step 1	$\mathrm{M}_{\mathrm{i}, \mathrm{CD}, \mathrm{j}, \mathrm{g}} \mathrm{g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO}, \mathrm{CD}, \mathrm{j},} \mathrm{g} / \mathrm{km}$; $\mathrm{n}_{\mathrm{vch}}$; $\mathrm{n}_{\mathrm{ve}, \mathrm{L}, \mathrm{L}}$; $\mathrm{UF}_{\text {phase.j }}$; $\mathrm{M}_{\mathrm{i}, \mathrm{Cs}, \mathrm{c}, 6}, \mathrm{~g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO} 2, \mathrm{CS}, \mathrm{declarcd},} \mathrm{g} / \mathrm{km}$. $\mathrm{M}_{\mathrm{CO}, \mathrm{cD}, \mathrm{declarcd}}, \mathrm{g} / \mathrm{km}$; $\mathrm{M}_{\mathrm{CO}, \mathrm{CD}, \mathrm{av}}, \mathrm{g} / \mathrm{km}$;	Calculation of weighted CO_{2} mass emission and fuel consumption according to paragraphs 4.1.3.1. and 4.2.3. of this annex. Output is available for each CD test. In the case that the interpolation method is applied, $\mathrm{n}_{\text {veh,L }}$ cycles shall be used. With reference to paragraph 4.1.2. of this annex, $\mathrm{M}_{\mathrm{CO}, \mathrm{CD}, \mathrm{j}}$ of the confirmation cycle shall be corrected according to Appendix 2 to this annex. In the case that the interpolation method is applied, the output is available for each vehicle H, vehicle L and, if applicable, vehicle M .	$\mathrm{M}_{\text {Co2,wcighted, }} \mathrm{g} / \mathrm{km} ;$ $\mathrm{FC}_{\text {wcighted }} / 1 / 100 \mathrm{~km} ;$

Interpolation family result. If the	Output step 1	$\mathrm{AER}_{\text {city ave }}$,	For Level 1B Averaging EC and EC declaration.$E C_{p, f i n a l}=E C_{p, \text { ave }} \times \frac{E C_{\text {dec }}}{E C_{\text {ave }}}$	For Level 1B $\mathrm{EC}_{\mathrm{dcc}}, \mathrm{Wh} / \mathrm{km}$; $\mathrm{EC}_{\mathrm{p} \text {,final }}, \mathrm{Wh} / \mathrm{km}$; $\mathrm{EAER}_{\text {final }}, \mathrm{km}$;
	Output step	2,weighted, g / km;		
	Ouput step	$\mathrm{FC}_{\text {wcieghed, }} / 100 \mathrm{~km} \text {; }$		
interpolation	Output step			For Level 1A
thod is not		$\mathrm{EC}_{\mathrm{p}}, \mathrm{Wh} / \mathrm{km}$;	For Level 1A and Level 1B	$\mathrm{AER}_{\text {city,final }}$, km;
applied, step			eraging and intermediate rounding	Mco2,wecighted,fmal, g / km
No. 9 is not required and the output of	Output step 3	$\mathrm{EAER}_{\mathrm{p}}, \mathrm{~km}$	according to paragraph 6.1.8. of this Regulation.	$\mathrm{FC}_{\text {wieighted,final }}, 1 / 100 \mathrm{~km}$; $\mathrm{EC}_{\text {final }}, \mathrm{Wh} / \mathrm{km}$; $\mathrm{EC}_{\mathrm{p} \text {.final }}, \mathrm{Wh} / \mathrm{km}$;

Justification:

- Ensure consistency between tables and formulas

New topic - just editorial

Current/amended text based on 03 series (applicable on 02 series as well)

Justification:

- Verification of CoP on electric energy consumption of PEVs can be conducted according to Consecutive cycle Type 1 Test Procedure (Table A8/10) or Shortened Type 1 Test Procedure (Table A8/11).
- References for DC Electric energy consumption according to Shortened Type 1 Test Procedure (Table A8/11) should be included as well

New topic - just editorial

Current/amended text based on 03 series (applicable on 02 series as well)

Current text

For electric energy consumption			
Annex B8 Table A8/10 Step 4 for PEVs	$\mathrm{EC}_{\text {dc,first, }} \mathrm{Wh} / \mathrm{km}$;	The electric energy consumption shall be multiplied with the run-in factor determined according to naragranh 8.2.4. of this	$\mathrm{EC}_{\text {test-i, }}, \mathrm{Wh} / \mathrm{km}$;

Amended text

		Regulation, if the factor is available.	
For electric energy consumption			
Annex B8 Table A8/10 Step 4 and Table A8/11 Step 3 for PEVs	$\mathrm{EC}_{\mathrm{Dc} \text {, fists, }} \mathrm{Wh} / \mathrm{km}$;	The electric energy consumption shall be multiplied with the run-in factor determined according to paragraph 8.2.4	$\mathrm{EC}_{\text {test-i. }}$, $\mathrm{Wh} / \mathrm{km}$;

Justification:

- Verification of CoP on electric energy consumption of PEVs can be conducted according to Consecutive cycle Type 1 Test Procedure (Table A8/10) or Shortened Type 1 Test Procedure (Table A8/11).
- Run-in factors should be applicable also for shortened type 1 test procedure energy consumption results

New topic - just editorial

Series: 01 and 03

Current/amended text based on 01 series (applicable on 03 series as well)

2.1.1.5.2. Electric energy consumption of PEVs (if applicable)

Test 3 (if applicable)
Record test results in accordance with the table of Test 1
Curren t text

EC (Wharm)	Low	Medium	High	ExtraHigh	City	Combined 4 phase cycle	Combined 3 phase cycle
Averaging EC							
Final values EC							

2.1.1.5.2. Electric energy consumption of PEVs (if applicable)

Amend ed text

Test 3 - - Results after 4 Phase cycle (if if applicalle)
Record test results in accordance with the table of Test

Information for COP - Results after 4 Phase cycle (if applicable)

Information for COP - Results after 3 Phase cycle (if applicable)

Justification:

Additional tables required as Low, Mid, High can be different for 3-phase and 4-phase because these are multiplied by the adjustment factor

- Adjustment factor is calculated from "combined value measured" and "combined value declared"
- Adjustment factor can be different between 3-phase and 4-phase
Note: Same rationale applies for COP values

New topic - just editorial

Series: 00 and 02

Currentamended text based on 00 series (applicable on 02 series as well)

Table A6/1
Applicable rules for a manufacturer's declared values (total cycle values) ${ }^{(a)}$ (as applicable)

Table A6/1
Applicable rules for a manufacturer's declared values (total cycle values) ${ }^{(a)}$ (as applicable)

Justification:

- Separate declared values for 3 and 4 phased $\mathrm{EC}_{\text {wLTC }}$ and PER
- MDV table does not distinguish between 3 and 4 phase here
- Proposal: additional footnote
- Note: slightly different wording for Series 00 \& 02

Annex B6 \rightarrow Table A6/1 footnote
New topic - just editorial

Series: 01 and 03

Current/amended text based on 01 series (applicable on 03 series as well)

Table A6/1
Applicable rules for a manufacturer's declared values (total cycle values) ${ }^{(3)}$ (as applicable)

Current text

Table A6/1

$$
\text { Applicable rules for a manufacturer's declared values (total cycle values) }{ }^{(a)} \text { (as applicable) }
$$

 d tex

Justification:

- Separate declared values for 3 and 4 phased EC ${ }_{\text {WLTC }}$ and PER
- MDV table does not distinguish between 3 and 4 phase here
- Proposal: additional footnote

Currentramended text based on 03 series (applicable on 01 series as well)

Justification:

- 4 phases calculation results of individual vehicles should be identical whatever the series of amendment.
- Proposal is to harmonize 01 and 03 series of amendment with provisions applicable to level 1 A of 00 and 02 series when coming to Rolling Resistance of tires used for 4 phases calculation of individual vehicles.
- This would apply to 4 phases calculation only. No change for 3 phases calculation.
- The proposed modification results in a change for 01 and 03 series only. Retrofit in 00 and 02 series would be for harmonization of wording only.

Currentamended text based on 02 series (applicable on 00 series as well)

Applicable test cycle

Applicable test cycle
 Applicable WLTP test cycle

The reference test cycle according to paragraph 1.4.1. of this annex shall be the applicable WLTP test cycle (WLTC) for the Type 1 test procedure.
In the case that paragraph 9. of Annex B1 is applied based on the reference test cycle as described in paragraph 1.4.1. of this annex, this modified test cycle shall be the applicable WLTP test cycle (WLTC) for the Type 1 test procedure.
Level 1A only
Applicable WLTP city test cycle
The Class 3 WLTP city test cycle (WLTC $_{\text {city }}$) is specified in paragraph 3.5. of Annex B1

1.4.2 \rightarrow Applicable test-cycle $\boldsymbol{}$ \|
1.4.2.1. \rightarrow Applicable-WLTP test-cycleđ The reference-test-cycle according to paragraph 1 .4.1. of this annex shall-be the-applicable-WLTP test-cycle-(WLTC) for the-Type-1 test procedure.f In the case that paragraph ${ }^{9} 9$-of Annex ${ }^{\circ} 1$ is applied based on the reference test cycle as described in paragraph 9.4 .1 - of this annex this modified test cycle shall be the applicable-WLTP test-cycle-(WLTC) for the Type 1 test procedure.
1.4.2.2. \rightarrow Level 1Λ only

Applicable-WLTP-city-test-cyclef
The-Class-3-WLTP -city test-cycle-(WLTC city) -is-specified in paragraph 9 .5. of Annex ${ }^{\text {B }}$ 1..

Justification:

- "Level 1A only" makes no sense in 1.4.2.2.
- It could lead to the interpretation in paragraph 3.4.2.1.1. that dynamic segment for Level 1B just consists out of applicable WLTP test cycle only as paragraph 1.4.2.2. is not applicable
- Furthermore, restriction to Level 1A not required in paragraph 1.4.2.2. because anyway stated in the whole calculation chapter that city cycle not applicable for Level 1B, e.g. in front of Table A8/11

Proposal:

- Delete "Level 1A only" in paragraph 1.4.2.2.

