Hydrogen-ready solutions for compression stations

Alexander Ustyuzhanin – Baker Hughes

25 October 2023, Ashgabat
Advancing the Hydrogen Revolution

Why Baker Hughes

2000+
Compressors working with H2 rich gases

70+
Gas Turbines burning H2 up to 100%

1915
First Reciprocating Compressor for H2

2009
First 100% H2 GT in commercial project
Hydrogen Transport: The EHB initiative

• Hydrogen is expected where electrification is not an option:
 • energy-intensive industry
 • heavy-duty transport sectors

Developing a dedicated hydrogen infrastructure is necessary to release the full potential of hydrogen as energy carrier.
H₂ Ready Pipeline Station
Gas Turbine
Managing Hydrogen in Gas Turbine: Blending H2 with Natural Gas

$\text{H}_2 = \downarrow \text{CO}_2 \text{ emissions}$

Different thermophysical properties

$\text{H}_2 = \downarrow \text{Energy density & Flame instability}$

$\text{H}_2 = \uparrow \text{Flame temperature} = \uparrow \text{NO}_x$

< 10% Safely tested at site for pipeline – no NOx increase

10% – 20% Minor modifications on package

>30% NOx significant increase and package modification

- H$_2$/NG Pipeline—Istrana, Italy
- Nova LT™12

Snam and Baker Hughes successfully completed First Trial for the use of H$_2$ as Fuel in a Gas Compression Station
Challenges of Hydrogen Utilization in Gas Turbines

Engine and package modifications are needed for hydrogen fuel

Combustion
- High flame speeds
- Wide flammability limits
- High flame temperatures
- Flashback
- Combustion dynamics

Delivery & Package
- Storage
- Sealing
- Material compatibility
- Equipment validation & ATEX/NEC certifications

Operation
- Start-up and shut-down procedures
- Fuel system/engine/package purge requirements
- Flame detection
- Gas detection
- Performance/durability (high % H₂)
Managing Hydrogen in Gas Turbine: 100% Hydrogen

- Unabated NOx emission 160 ppmvd @15%O₂
- Enhanced burners design: Parts’ life analysis in line with NG maintenance plan
- Specific solutions to reach 15 ppmvd @15%O₂ or less
H₂ Ready Pipeline Station Compression
Impact of hydrogen on centrifugal compressors

Material

- **Hydrogen Attack**
 Affect Carbon and low alloy steels, $T > 200^\circ C$
 usually not applicable for pipeline CC

- **Hydrogen Embrittlement (HE)**
 Affect high-strength steels and titanium alloys, $T < 150^\circ C$
 applicable for pipeline CC

 Hydrogen dissociates in atoms and penetrates the material \rightarrow local plasticization and brittle failure

 LIMITS ON MAXIMUM YIELD STRENGTH AND HARDNESS

Thermodynamic performances

When Hydrogen content increases...

- Head increases
- Power increases
- Discharge temperature increases

 MAIN CHALLENGE \rightarrow COMPACT SOLUTION
Summary – material impacts

considering ≈ 70 bar reference pressure (assuming also for auxiliaries)

Modification in this range driven only by thermodynamic limits

- **0%**
- **5%**
- **10%**
- **20%**
- **100%**

Detailed checks on auxiliaries are required

Worst case: to replace the seal system and antisurge loop

Detailed checks on Flange to flange is required

Worst case: to replace the rotor

Detailed checks on DGS cartridge

Worst case: to replace the cartridge

- Hardness < 34
- Max yield strength < 827MPa
Performances impact – General

Impact on speed and power (at constant Nm3/h)

When the \(\text{H}_2 \) content raises, both operating speed and absorbed power increase as indicated in the graph above.

Impact on Nm3/h (at constant gas energy)

At constant gas energy, higher is the \(\text{H}_2 \) content, larger will be the flow, demanding more speed and power.
Performances impact – General

Impact on Pressure Ratio

Pressure ratio decreased by 9 times with 100% H₂ compared to 100% CH₄.

Keeping same pressure duty, polytropic head requirement increases consequently.

How to increase head capability?

- Increasing the number of stages (up to the max allowed by one casing or adding casings)
- Using high head impellers
- Increasing rotating speed (increase impeller tip speed)

High Pressure Ratio
Compressor technology
Case study – Pipeline Compression Station

Case study
Flow constant: 2000 MMSCFD,
Inlet Pressure: 60 bar
Outlet Pressure: 110 bar

<table>
<thead>
<tr>
<th>Hydrogen Blend [% mol]</th>
<th>0%</th>
<th>10%</th>
<th>20%</th>
<th>30%</th>
<th>40%</th>
<th>50%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of impeller required</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard PCL impellers U2 = 250 m/s</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>28</td>
</tr>
<tr>
<td>High head impellers U2 = 300 m/s</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>HPRC impellers U2=450 m/s</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>9</td>
</tr>
</tbody>
</table>

HPRC solution is a great option when H2 content is predominant
Conclusion
Conclusion – Roadmap to decarbonization

Initial H₂ availability

Today

First step to decarbonization

Goal: starting H₂ demand, test of infrastructure

Blend up to 10%:
- Possible with little modifications
- No need for compressor rebundle
- No major impact on safety

Blend up to 20%:
- Possible with minor modifications
- Engineering work to be foreseen
- Check of compressor performances (possible rebundle)

Tomorrow

Further CO₂ reduction leveraging H₂

Combustion system ready for H₂ blend up to 100%

Compression technology ready for 100% H₂ pipeline station

Full decarbonization

Goal: Decarbonization of the hard to abate sectors
- Low Nox Gas turbines
- Compression equipment fit for H₂
- Package components tested for H₂
- Safety handling

Decarbonization journey can start today
Advancing the Hydrogen Revolution

Why Baker Hughes

2000+ Compressors working with H2 rich gases

70+ Gas Turbines burning H2 up to 100%

1915 First Reciprocating Compressor for H2

2009 First 100% H2 GT in commercial project