

Activities on Vehicle electrification at the World Forum for Harmonization of Vehicle Regulations (WP.29)

Francois Cuenot, UNECE SC.1
17 October 2023

Harmonized regulation for Electrified vehicles

Index

- What is WP.29: the 3 global agreements on harmonized vehicle regulations
 - 1958 Agreement and UN Regulations
 - 1998 Agreement and UN GTRs
 - 1997 Agreement and UN Rules on periodic technical inspections
- Activities on EVs
 - Safety
 - Environment
- Conclusions and Next steps

- The unique worldwide regulatory forum for the automotive sector
- Administrating three Multilateral UN Agreements :
- 1. The 1958 Agreement -> UN Regulations
 - 54 contracting parties (4 in Africa)
 - Last country joining : Pakistan in 2020
 - Reciprocal recognition of Type Approval
 Approved once and accepted everywhere(CPs)
 - Elimination of barriers to trade
 - Administrative provision + E marking

- 2. The 1998 Agreement -> UN Global Technical Regulations (GTRs)
 - 38 contracting parties (3 in Africa)
 - Most major automotive markets
 - Commit themselves to implement/transpose a UN GTR into national legislation, when voting in favour
 - Need a system/agency for market surveillance and enforcement of production compliance
- 3. The 1997 Agreement -> UN Rules
 - Legal framework for Periodic Technical Inspection (PTI) of vehicles in use
 - Reciprocal recognition of certificates of such inspections for cross-border use of vehicles
 - UN Rule 4 provides "Uniform provisions for periodical technical inspections of motor vehicles equipped with electric or hybrid propulsion system(s) with regard to their roadworthiness"

UN Regulations on electrified vehicle Safety considerations

- UN Regulation No. 100 / UN GTR No. 20 on Electric Vehicle Safety (EVS) for cars, vans and trucks
- UN Regulation No. 136 for electric two-/three-wheelers safety
- UN Regulations No. 12, 94, 95, 137 and 153 on post-crash safety for cars and vans
 - Address potential safety risks of EVs either of vehicles in use or after a crash event
 - Electrical shocks associated with the high voltage circuits of EVs
 - Potential hazards associated with lithium-ion batteries and/or other
 - Rechargeable Electrical Energy Storage Systems (REESS) (in particular, containing flammable electrolyte)
 - Fire resistance tests and requirements

	Electric	REESS		
	In-use	Post crash	safety	
EU	R100	R12, R94, R95	R100	
Japan	R100	R12, R94, R95	R100	
US	None	FMVSS305	None	
China	(GB/T18384-3)	(New GB/T)	(New GB/T)	
S. Korea	KMVSS	KMVSS	KMVSS	
(others)	???	???	???	

4A	Isolation resistance measurement method for vehicle based tests
4B	Isolation resistance measurement method for component based tests of a REESS
6	Part 1 - Essential characteristics of road vehicles or systems
	Part 2 - Essential characteristics of REESS
	Part 3 - Essential characteristics of road vehicles or systems with chassis connected to electrical circuits
7	Determination of hydrogen emissions during the charge procedures of the REESS
8	REESS test procedures
	Appendix - Procedure for conducting a standard cycle
8A	Vibration test
8B	Thermal shock and cycling test
8C	Mechanical Drop Test for removable REESS
8D	Mechanical shock
8E	Fire resistance
	Appendix - Dimension and technical data of firebricks
8F	External short circuit protection
8G	Overcharge protection
8H	Over-discharge protection
8I	Over-temperature protection
9A	Withstand voltage test
9B	Water resistance test
,,,	THE TOURSE CONT.

Protection against direct contacts of parts under voltage

Example of UN Regulation No. 100

- Entered into force in 2016
- Adopted by all contracting parties to the 1958 Agreement
- Many tests on both the vehicles and its battery
- Similar to those of cars and vans
- All UN texts standalone and free of charge

https://unece.org/transport/vehicleregulationswp29/standards/addenda-1958agreement-regulations-121-140?accordion=16

3

UN Regulations No. 100 - Examples

- protection of persons against access to hazardous parts
 - Jointed test finger

UN Regulations No. 100 - Examples

- Water resistance test
 - Nozzle design and test specifications

(a) Spraying with a stream of fresh water the enclosure from all practicable directions with a standard test nozzle as shown in Figure 1.

Figure 1
Test device to verify protection against water jets (hose nozzle)

φD'=6.3 mm unit: mm

The conditions to be observed are as follows:

- Internal diameter of the nozzle: 6.3 mm;
- (ii) Delivery rate: 12.5 1/min ± 5 per cent;
- (iii) Water pressure: to be adjusted to achieve the specified delivery rate;
- (iv) Core of the substantial stream: circle of approximately 40 mm diameter at 2.5 m distance from nozzle;
- (v) Test duration per square metre of enclosure surface area likely to be sprayed: 1 min;
- (vi) Minimum test duration: 3 min;
- (vii) Distance from nozzle to enclosure surface: between 2.5 m and 3 m.
- (b) Subsequently, apply 500 V DC between all high voltage inputs and the vehicle's exposed conductive parts/electrical chassis if present to measure the isolation resistance.

UN Regulations on electrified vehicle Environmental considerations

- Range of EVs covered in UN GTR No. 15 and UN Regulation No.154 on WLTP
 - UN GTR No. 21 Determination of electrified vehicle power (needed for WLTP or else)
- UN GTR No. 22 Battery durability requirements
 - Canada, China, Japan, Korea, UK, US, EU adopted proposal for harmonized minimum performance requirements

Vehicle age/km for categories 1-1 and 1-2 in the scope of this GTR	OVC-HEV	PEV
From start of life to 5 years or 100,000 km, whichever comes first	80 per cent	80 per cent
Vehicles more than 5 years or 100,000 km, and up to whichever comes first of 8 years or 160,000 km	70 per cent	70 per cent

Light duty vehicles only at the moment; Vans (monitored) and trucks to be included soon

Harmonization gaps to further incentivize EV deployment

- Communication between EV and its (recharging) infrastructure
 - Hardware not harmonized, light duty

	N. America	Japan	EU and the rest of markets	China	All Markets except EU
AC	000	000	000	0000	
	J1772 (Type 1)	J1772 (Type 1)	Mennekes (Type 2)	GB/T	
DC		O O	00	o o o o	
	CCS1	CHAdeMO	CCS2	GB/T	Tesla

Harmonization gaps to further incentivize EV deployment

- Communication between EV and its (recharging) infrastructure
 - Bilateral agreement for Heavy Duty between EU/US to adopt MCS, Megawatt Charger system

https://www.whitehouse.gov/briefing-room/statements-releases/2023/05/31/u-s-eu-joint-statement-of-the-trade-and-technology-council-2/

Charging infrastructure needs

Depot charging key for transport/fleet operators

V2X role to cross benefit vehicle and the grid

Sustainable power generation + stationary battery energy storage + electrifying everything (esp. transport) are the 3 pillars of a sustainable energy future.

Cooperation between Utilities, Industry players, Operators and DSO/TSOs is key to integrate the 4 pillars.

Electricity demand in our economy will grow 3x. Technologies can provide flexibility and better anticipate between demand and supply.

We need a clear roadmap to enable the electricity growth. We need processes,-business models and operations improvements too.

V2X is key to solve local and unplanned grid issues (on top of constraint based tech and supply driven technologies)

V2X unlocks a flexible, free floating fleet of mobile batteries, with enough spare capacity not always required for traveling.

V2X unlocks a flexible, free floating fleet of mobile batteries, with enough spare capacity not always required for traveling.

Conclusions and next steps

- Regulatory aspects for EVs and their batteries are well covered globally at the vehicle level; high investment from industry to deploy EV technology; regulatory framework also quickly improving
- Role of energy provider / grid operator key to successful deployment
- Adoption by large fleet operators to be better coordinated? Role of SC.1 in experience sharing from operators?

Thank you!