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• National Statistical Offices (NSOs) have a wealth of data but are limited 

in some ways on what can be collected

Sensitive topics, legally protected data, organizational data, …

• To get insights from data that cannot be collected, Federated Learning 

is a potential solution

• To expand the research being done by NSOs, ISTAT, Statistics Canada, 

and Statistics Netherlands have expanded previous research on 

Federated Learning and its potential utility for NSOs
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• This work explores applying Federated Learning (FL) on a Human 

Activity Recognition dataset by testing the following

✓ Different federated aggregation strategies

✓ Using Differential Privacy to better protect the locally trained 

Machine Learning (ML) models

✓ Homomorphically encrypting model weights to hide their values 

from the central authority (aggregator)
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• FL allows a centralized ML model to be trained on data residing on 

distributed client devices, with the locally updated models then being 

aggregated

• This allows analytics to be derived from data sources that cannot be 

collected

• The performance of the trained models can reach similar 

performance of centralized approaches, but a careful selection of the 

hyperparameters and the aggregation method is important
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• While this allows previously impossible analytics to be possible to 

generate, the approach on its own does not remove all privacy risks

✓ Locally trained client models can still be attacked

• Other Privacy Enhancing Technologies (PETs) can be used in 

conjunction with FL to defend against these concerns

✓ Differential Privacy (trade-off of performance vs privacy)

✓ Homomorphic Encryption (adds more computational complexity)
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• After training the model with data locally, a client will send the 

weights or gradients back to the server to be aggregated

• Within this work we test the following federated aggregation 

methods:

✓ Federated Averaging (FedAvg)

✓ Federated Adaptive Gradient (FedAdagrad)

✓ FedAdam (Federated Adam)

✓ FedYogi (Federated Yogi)
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✓ Federated Averaging (FedAvg): it is a federated learning algorithm 

that aims to train a global model by aggregating the local model 

updates from multiple clients by calculating the average of the 

model parameters. 

✓ Federated Adaptive Gradient (FedAdagrad): it is a variant algorithm 

that exploits the adaptive gradient descent method called Adagrad. 

It adapts the learning rate for each model parameter based on its 

historical gradients, allowing the model to converge faster and 

achieve better performance. 
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✓ FedAdam (Federated Adam): it is another federated learning 

algorithm that combines the advantages of the Adam optimizer with 

the federated learning setting. It employs adaptive learning rates and 

momentum to efficiently update the global model using the local 

updates from clients. The gradients computed locally by the devices 

are aggregated in the central server.  

✓ FedYogi (Federated Yogi): it is a federated learning algorithm inspired 

by the Yogi optimizer. It incorporates elements of both adaptive 

learning rates and momentum to handle non-convex optimization 

problems in federated learning scenarios.   
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• At a high level, DP is a PET which injects noise into data or statistics 

such that the results are the same whether any single datapoint

within a database is or is not present within the database

• Injects noise during the training to control the amount of increased 

privacy with a corresponding drop in performance  

• The privacy budget 𝜖 determines the amount of privacy to be added, 

where a lower 𝜖 adds more privacy
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• We compare different aggregation methods with and without DP 

being used

• Different 𝜖 values are used to observe the privacy/performance 

tradeoff

• Using DP with FL helps protect the privacy of the model weights or 

gradients being sent to the central authority
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F1-Score comparison over different strategies and epsilon values
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F1-Score comparison per class over 

different strategies and epsilon values
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• Allows to perform arithmetic 

operations on encrypted data

HE is a public-key cryptographic 

scheme.

• Application: delegated computing! 

Unparalleled cryptographic security

at the cost of higher computational 

and storage requirements.
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HE aggregation in a FL setting
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Experiment 2 – Homomorphic Encryption Aggregation Results
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Strategy Relative 

training 

time

Relative 

RAM

Relative 

model size

Relative 

Encryption -

Serialization 

Time

Relative 

Deserialization -

Decryption 

Time

FedAvg 1 1 1 1 1

eFedAvg (1) 1.04 1 8.78 23 631

eFedAvg (2) 597 1.08 4001 1237 2532

• FedAvg: model’s last layer encryption 

• FedAvg (1): model’s last two layers encryption

• FedAvg (2): model’s last three layers encryption
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• FedAvg and FedYogi perform the best in this experiment when 

unoptimized

• DP’s effect on the performance will vary depending on the aggregation 

strategy and 𝜖 must carefully be selected

• Homomorphic Encryption can add significant time and communication 

costs, scaling with the amount of encrypted weights/gradients

• Overall, FL is a feasible approach to be considered by NSOs when data 

cannot be collected
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