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Questions?
https://tinyurl.com/QuestionsUoM

https://tinyurl.com/QuestionsUoM


Federated Learning (FL)
FL (McMahan et al., 2017) is a decentralized approach to training statistical 
models
• Multiple clients can produce one global model

• Clients do not share or exchange their own data

• Can reduce privacy and security risks (compared to methods that combine multiple data 
sources)

• Allows models to train on data that is more representative of the whole distribution

• Useful where clients do not possess enough data to generate the required statistical power



Federated Learning (FL)
Central server controls the process (but does not access any client data)
• Initialises model, sends to each client
• Typically, neural network type models are used

Each client trains the model on their own data
• Send updates (parameters or model weights) back to server

Server aggregates the client updates
• Sends updated model back to clients

Iterative process
• Training usually terminated when specific criterion is met:
• E.g., maximum number of iterations



NVIDIA - A centralized-server approach to federated learning. https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/



Federated Synthesis
Using FL to generate synthetic data
• Emerging research field

• Small body of research focussing mostly on image data

• Less research on tabular data 

• Methods predominantly use GANs (Generative Adversarial Networks, Goodfellow et al. 
2014))

Is it possible to produce useful synthetic microdata in a federated way?
• Proof of concept using Genetic Algorithm (GA)



Genetic Algorithms (GAs)
GAs (Holland, 1992) perform iterative optimisation, training over multiple generations
• Three main biologically inspired operators:
• Selection, Crossover, Mutation 

➢ Initial population of candidate solutions (candidate solution = synthetic dataset)
➢ Fitness (similarity to original data) of each candidate calculated
➢ Select fitter candidates (parents) to reproduce for new population
➢ Crossover – combines parents to produce new candidates (children)
➢ Mutation – randomly change some of the candidates features
➢ Next generation – children, or combination of best (fittest) parents and children 

(elitism)
➢ Repeat process multiple times (generations) using fitness to guide



Study Design - Data
A (very) simple binary dataset, 
randomly sampled from UK 1991 
Census microdata (University of 
Manchester, 2023)
• Small dataset to enable understanding

• 10 rows, 5 binary variables

• “Original” dataset

• Randomly split into two five-row datasets

• representing two clients (A and B)

AGE MSTATUS SEX LTILL TENURE client

1 2 2 2 2 A

1 1 1 2 2 A

1 1 1 2 2 A

2 2 2 2 1 A

1 1 1 2 1 A

2 2 2 2 1 B

1 2 2 2 1 B

1 1 1 2 1 B

1 1 1 1 2 B

1 1 1 2 1 B



Study Design - Parameters
Huge potential range of variation in the simulation
Three types of parameters:
• Model: changeable settings for the GA (e.g., mutation rate)

• Simulation: variations in the scenario being presented (e.g., number of clients)

• Experimental: elements that are not part of the simulation itself (e.g., data choice, number 
of runs)

Model complexity is kept low to aid with interpreting the results

• Focus only on utility (not risk)

• Small dataset

• GA uses mutation but not crossover

• Two clients for FL



Study Design - Parameters





Results – Experiment 1
Running GA on original dataset 
(10 rows)
• All five randomly initialised 

runs converged
• i.e., they reproduced the original 

dataset



Results – Experiment 2
Running GA separately on client A and B datasets (5 rows each)
• For each, all five randomly initialised runs converged and reproduced the original dataset



Results 
Experiment 3
FL with two clients (A and B)
• All but one of the randomly 

initialised runs converged and 
reproduced the original datasets

• Panel 4 would not be available in 
reality – used for evaluation

• Convergence achieved despite the 
evaluations from clients, and the 
server aggregated score indicating 
suboptimality



Discussion
Experiment 3 demonstrates proof of concept
• Analytically useful datasets were synthesised across distributed datasets

It was not clear on the server that the original data had been reproduced
• Might be useful in terms of disclosure risk

• Means we cannot rely on server-side restraint to minimise risk



Caveats and future work
Experiments conducted on small sample of binary Census microdata
• May not scale to larger, more complex data

• Very large datasets may be computationally impractical

Would need to consider different parameters
• More than 2 clients

Single-objective focus on utility
• In a real-life scenario, the goal would not be to reproduce the original data

• Risk would need to be factored in

◦ A multi-objective approach within the GA could be used

◦ Deep learning methods also a possibility



Questions?
https://tinyurl.com/QuestionsUoM

Email: claire.little@manchester.ac.uk

https://tinyurl.com/QuestionsUoM
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