Experiments on Federated Data Synthesis

CLAIRE LITTLE, MARK ELLIOT, RICHARD ALLMENDINGER

UNIVERSITY OF MANCHESTER

The University of Manchester

Questions?

https://tinyurl.com/QuestionsUoM

Federated Learning (FL)

FL (McMahan et al., 2017) is a decentralized approach to training statistical models

- Multiple clients can produce one global model
- Clients do not share or exchange their own data
- Can reduce privacy and security risks (compared to methods that combine multiple data sources)
- Allows models to train on data that is more representative of the whole distribution
- Useful where clients do not possess enough data to generate the required statistical power

Federated Learning (FL)

Central server controls the process (but does not access any client data)

- Initialises model, sends to each client
 - Typically, neural network type models are used

Each client trains the model on their own data

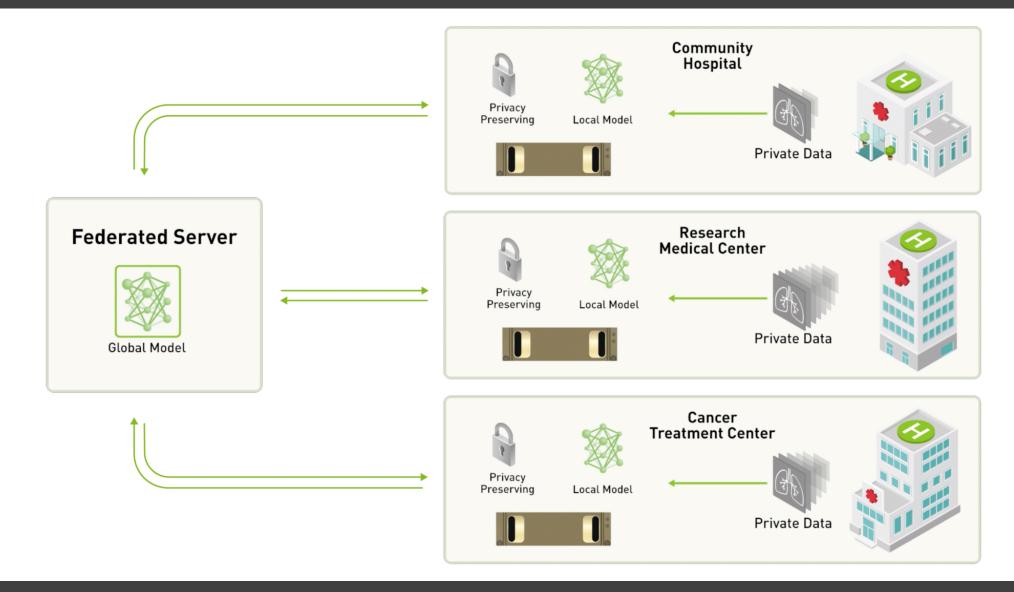
• Send updates (parameters or model weights) back to server

Server aggregates the client updates

• Sends updated model back to clients

Iterative process

- Training usually terminated when specific criterion is met:
- E.g., maximum number of iterations



NVIDIA - A centralized-server approach to federated learning. https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/

Federated Synthesis

Using FL to generate synthetic data

- Emerging research field
- Small body of research focussing mostly on image data
- Less research on tabular data
- Methods predominantly use GANs (Generative Adversarial Networks, Goodfellow et al. 2014))

Is it possible to produce useful synthetic microdata in a federated way?

• Proof of concept using Genetic Algorithm (GA)

Genetic Algorithms (GAs)

GAs (Holland, 1992) perform iterative optimisation, training over multiple generations

- Three main biologically inspired operators:
- Selection, Crossover, Mutation
- > Initial population of candidate solutions (candidate solution = synthetic dataset)
- > Fitness (similarity to original data) of each candidate calculated
- > Select fitter candidates (parents) to reproduce for new population
- Crossover combines parents to produce new candidates (children)
- Mutation randomly change some of the candidates features
- Next generation children, or combination of best (fittest) parents and children (elitism)
- > Repeat process multiple times (generations) using fitness to guide

Study Design - Data

A (very) simple binary dataset, randomly sampled from UK 1991 Census microdata (University of Manchester, 2023)

- Small dataset to enable understanding
- 10 rows, 5 binary variables
 - "Original" dataset
- Randomly split into two five-row datasets
 - representing two clients (A and B)

AGE	MSTATUS	SEX	LTILL	TENURE	client
1	2	2	2	2	А
1	1	1	2	2	А
1	1	1	2	2	А
2	2	2	2	1	А
1	1	1	2	1	А
2	2	2	2	1	В
1	2	2	2	1	В
1	1	1	2	1	В
1	1	1	1	2	В
1	1	1	2	1	В

Study Design - Parameters

Huge potential range of variation in the simulation

Three types of parameters:

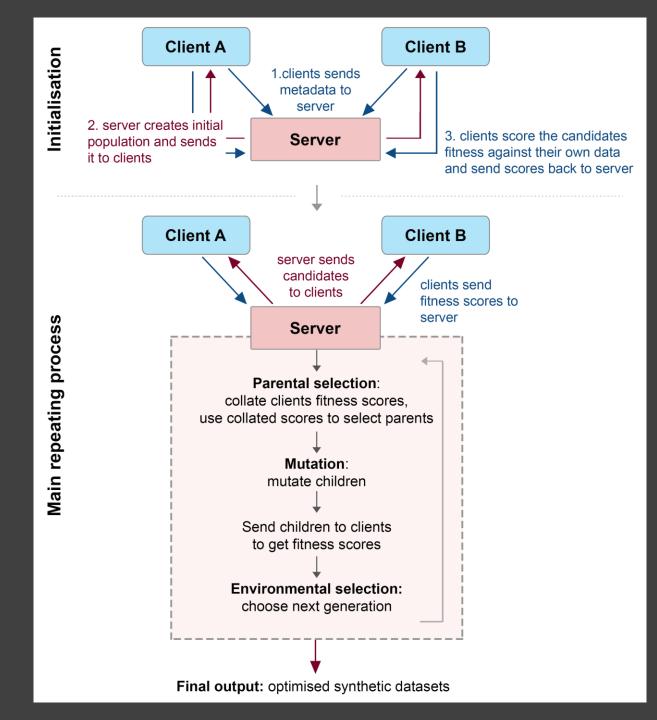
- Model: changeable settings for the GA (e.g., mutation rate)
- Simulation: variations in the scenario being presented (e.g., number of clients)
- Experimental: elements that are not part of the simulation itself (e.g., data choice, number of runs)

Model complexity is kept low to aid with interpreting the results

- Focus only on utility (not risk)
- Small dataset
- GA uses mutation but not crossover
- Two clients for FL

Study Design - Parameters

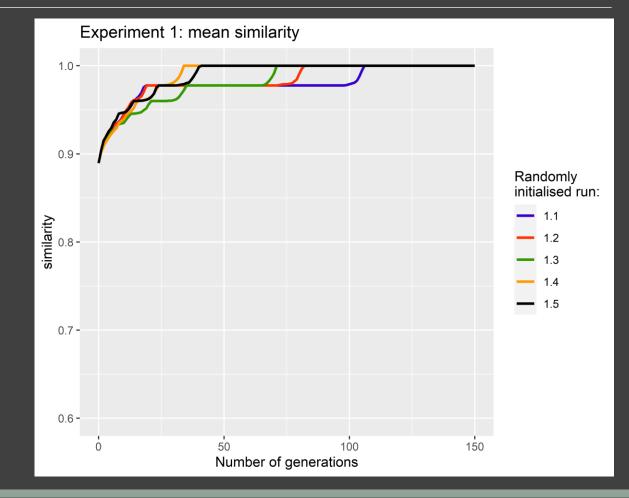
Parameter	Туре	Value chosen	Further details
No. of clients	Simulation	VARIES	2
Initial Metadata sent by clients	Simulation	Univariates	-
Combination of client scores	Simulation	VARIES	-
No. of objectives for GA	Simulation	1	Similarity (utility)
SDC applied to the output sent to server	Simulation	None	-
Output passed to client by server	Simulation	VARIES	2
Population size	Model	50	×
Parental selection	Model	Binary tournament	k=2
Mutation rate	Model	0.05	<u>1</u>
Crossover Operator	Model	None	-
Environmental selection	Model	Elitism	2
No. of generations	Experiment	150	-
Choice of Dataset	Experiment	UK Census microdata	1991
No. of rows (per client)	Experiment	VARIES	-
No. of variables	Experiment	5	-
Type of variables	Experiment	Binary	2
No. of runs	Experiment	5	



Results – Experiment 1

Running GA on original dataset (10 rows)

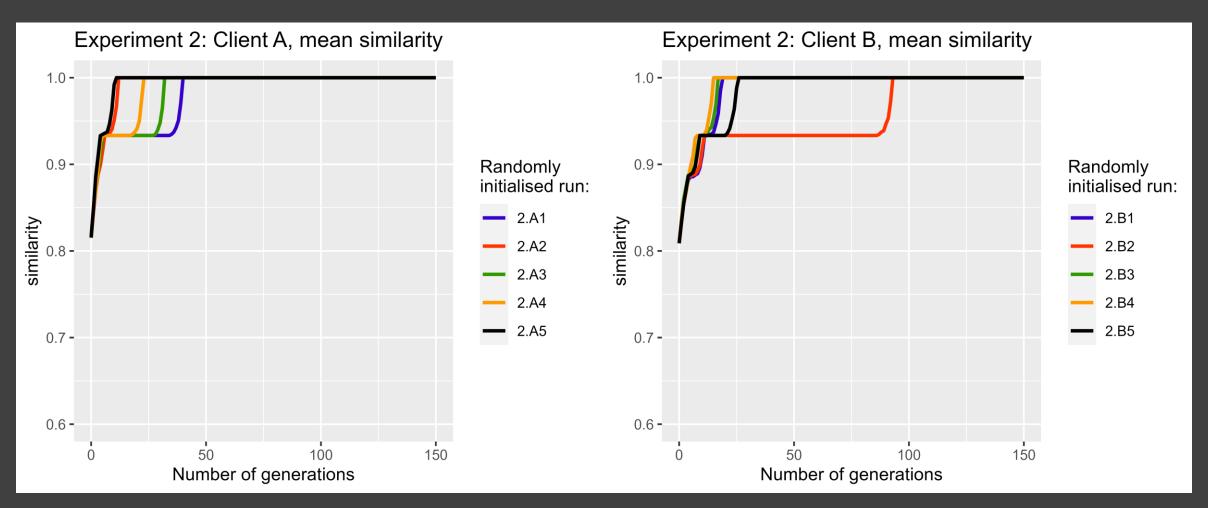
- All five randomly initialised runs converged
 - i.e., they reproduced the original dataset



Results – Experiment 2

Running GA separately on client A and B datasets (5 rows each)

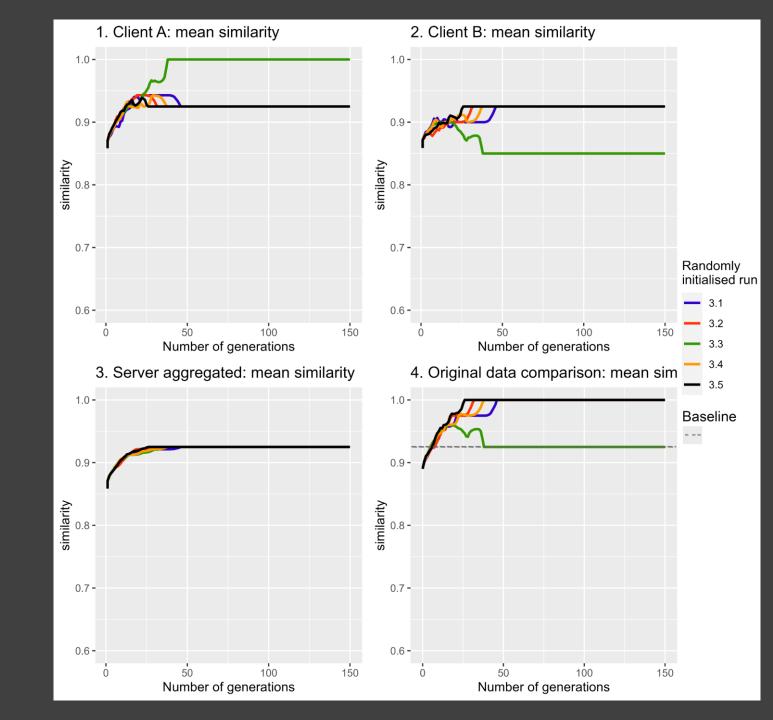
• For each, all five randomly initialised runs converged and reproduced the original dataset



Results Experiment 3

FL with two clients (A and B)

- All but one of the randomly initialised runs converged and reproduced the original datasets
- Panel 4 would not be available in reality – used for evaluation
- Convergence achieved despite the evaluations from clients, and the server aggregated score indicating suboptimality



Discussion

Experiment 3 demonstrates proof of concept

• Analytically useful datasets were synthesised across distributed datasets

It was not clear on the server that the original data had been reproduced

- Might be useful in terms of disclosure risk
- Means we cannot rely on server-side restraint to minimise risk

Caveats and future work

Experiments conducted on small sample of binary Census microdata

- May not scale to larger, more complex data
- Very large datasets may be computationally impractical

Would need to consider different parameters

• More than 2 clients

Single-objective focus on utility

- In a real-life scenario, the goal would not be to reproduce the original data
- Risk would need to be factored in
 - A multi-objective approach within the GA could be used
 - Deep learning methods also a possibility

Questions?

https://tinyurl.com/QuestionsUoM

Email: claire.little@manchester.ac.uk

References

McMahan, B., E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas (2017). Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence and statistics*, pp. 1273–1282. PMLR. <u>http://proceedings.mlr.press/v54/mcmahan17a/mcmahan17a.pdf</u>

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio (2014). Generative Adversarial Nets. In *Proceedings of the Advances in Neural Information Processing Systems*, Volume 27. <u>https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf</u>

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.

University of Manchester, Cathie Marsh Centre for Census and Survey Research, Office for National Statistics, Census Division. (2023). *Census 1991: Individual Sample of Anonymised Records for Great Britain (SARs)*. [data collection]. UK Data Service. SN: 7210, DOI: http://doi.org/10.5255/UKDA-SN-7210-1