

COACH: Computer-Assisted output Checking with Human-in-the-Loop

Manel Slokom, Jel Vankan, Peter-Paul De Wolf, Martha Larson

UNECE Expert meeting on Statistical Data Confidentiality 2023, Wiesbaden, Germany September 2023

Introduction - Context

Microdata Unsafe to be released No Output / Disclosure control Analysis i.e., Human Step excel files, spss, checkers Researchers R Yes Safe to be released

Introduction - Problems

- Traditional output checking are based on manual inspection
 - Time consuming
 - Resource intensive
- Green et al., (2021): ACRO (<u>Automatic Checking of Research Output</u>)
- To build machine learning models capable of predicting whether an output is safe for release or not:
 - Domingo et al., (2021)

Green, E., F. Ritchie, and J. Smith (2021). Automatic checking of research outputs (acro): A tool for dynamic disclosure checks. ESS Statistical Working Papers 2021 Edition.

Domingo-Ferrer, J. and A. Blanco-Justicia (2021). Towards machine learning-assisted output checking for statistical disclosure control. In Proceedings of 18th International Conference on Modeling Decisions for Artificial Intelligence: MDAI 2021

Research Questions

- How can we **semi-automate** output checking using machine learning?
 - How can we extend Domingo et al., (2021) work, i.e., on real data?
 - How can we involve **human checkers** in the process of training machine learning models?

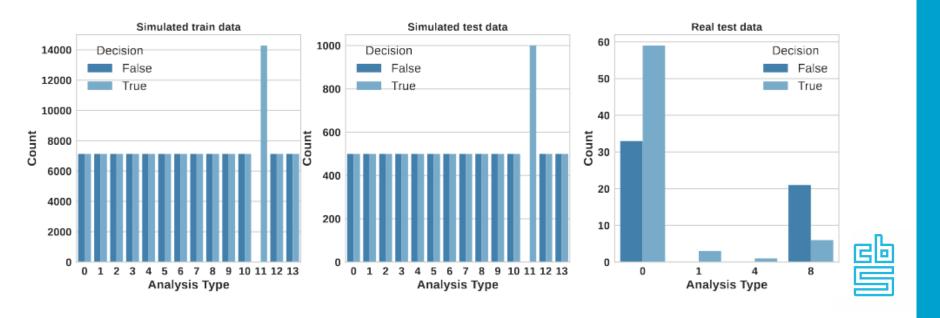
Solution: COACH

Facilitate output checking process

Reduce human bias

Include human-inthe-loop

Experimentation Setup



Experimental setup

Data Sets

- Simulated data (following Domingo et al., (2021)):
 - 14 rules of thumbs
 - 200K records in the training data and 14K records in the test data
 - Every rule has approx. 14700 records in the training data and 1000 in the test data
- Real data
 - 125 records dominated by frequency table, magnitude table, a regression model
 - Pre-processing step

Experimental Setup

Experimental setup

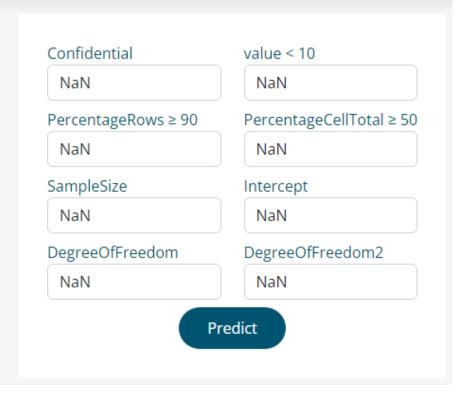
- Neural network
- LightGBM (LGBM)
- Random classifier

Experimentation Results

Prediction performance

Data Sets	HITL	Classifier	F1 (Macro)	MCC	G-Mean	TP	FP	TN	FN
Simulated Data	None	Random	0.3488	0.0000	0.5000	0	6500	0	7500
		LGBM	0.8489	0.7376	0.8599	6500	0	2101	5399
		Neural Network	0.9421	0.8838	0.9421	6123	377	433	7067

Evaluation of model trained on simulated data applied to real test data


Data Sets	HITL	Classifier	F1 (Macro)	MCC	G-Mean	TP	FP	TN	FN
Simulated Data	None	Random	0.3488	0.0000	0.5000	0	6500	0	7500
		LGBM	0.8489	0.7376	0.8599	6500	0	2101	5399
		Neural Network	0.9421	0.8838	0.9421	6123	377	433	7067
Real test data	None	LGBM	0.6139	0.4052	0.6409	16	38	1	68

Incorporating Human-in-the-loop with COACH

HUMAN-IN-THE-LOOP

Incorporating Human-in-the-loop with COACH

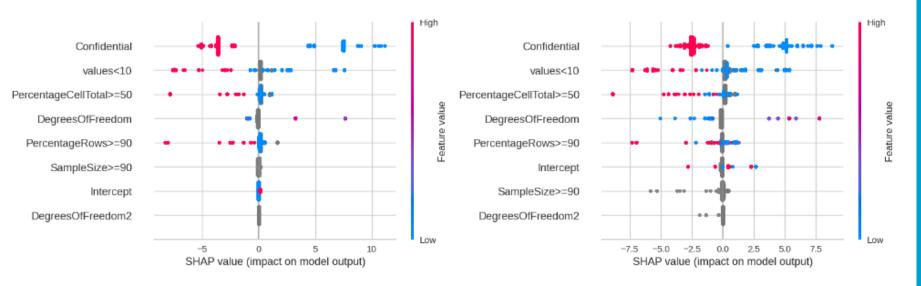
" Safe " Ready to be released! Summary Confidential value < 10 0.0 PercentageCellTotal ≥ 50 nan PercentageRows ≥ 90 nan SampleSize ≥ 90 Intercept nan Degree of freedom 1 nan Degree of freedom 2 nan Feedback Agree Remark Remarks...

Your output is

A second protection is strongly required!

Summany

Surrinary										
Confidential	1.0	value < 10	1.0							
PercentageRows ≥ 90	1.0	PercentageCellTotal ≥ 50	nan							
SampleSize ≥ 90	nan	Intercept	nan							
Degree of freedom 1	nan	Degree of freedom 2	nan							
Feedback										
Agree										
Remark										
Remarks.										
			d							
Save										



Incorporating Human-in-the-loop with COACH

Data Sets	HITL	Classifier	F1 (Macro)	MCC	G-Mean	TP	FP	TN	FN
Simulated Data	None	Random	0.3488	0.0000	0.5000	0	6500	0	7500
		LGBM	0.8489	0.7376	0.8599	6500	0	2101	5399
		Neural Network	0.9421	0.8838	0.9421	6123	377	433	7067
Real test data	None	LGBM	0.6139	0.4052	0.6409	16	38	1	68
Simulated	With	Random	0.3488	0.0000	0.5000	0	6500	0	7500
Data		LGBM	0.8489	0.7376	0.8599	6500	0	2101	5399
Real test data	With	LGBM	0.9099	0.8229	0.9143	51	3	8	61

Utilizing Global SHAP Values

Global interpretability: the collective SHAP values show how much each predictor contributes, either positively or negatively, to the target variable.

Utilizing Local SHAP Values

Local interpretability using reasoning plots for an individual case in test data.

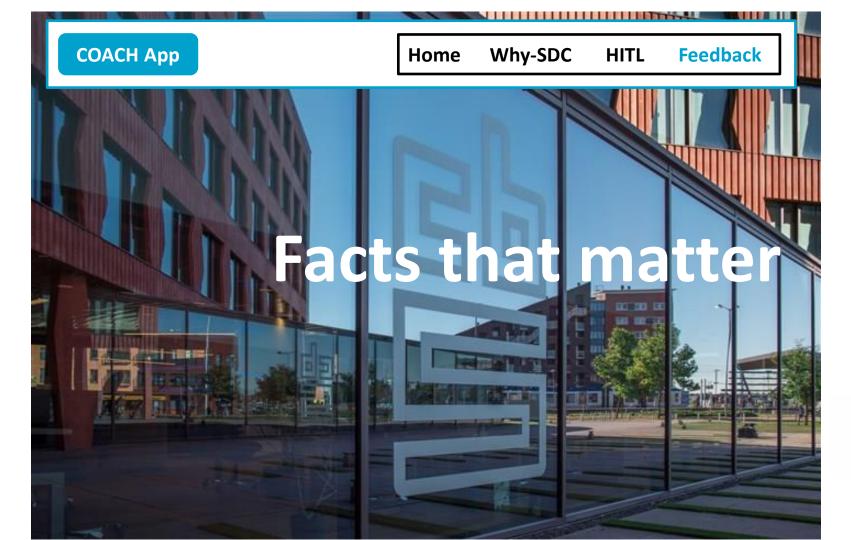
Conclusion & Future Work

Conclusion

Extend Domingo et al, (2021).

- Create COACH: a novel approach to semi-automate output checking
 - Human checkers are in-the-loop

Utilize global and local SHAP values for explainability



Future work

Improving COACH with AOCH (Assisted Output CHecking)

- Extending COACH
 - Explore other types of input data, e.g., features and preprocessing
 - Cross-platform: other statistical offices

