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Introduction - Context
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Introduction - Problems

• Traditional output checking are based on manual inspection

• Time consuming

• Resource intensive

• Green et al., (2021): ACRO (Automatic Checking of Research 
Output)

• To build machine learning models capable of predicting whether
an output is safe for release or not:

• Domingo et al., (2021)

Green, E., F. Ritchie, and J. Smith (2021). Automatic checking of research outputs (acro): A tool for dynamic disclosure checks. ESS Statistical Working 
Papers 2021 Edition.
Domingo-Ferrer, J. and A. Blanco-Justicia (2021). Towards machine learning-assisted output checking for statistical disclosure control.  In Proceedings of 
18th International Conference on Modeling Decisions for Artificial Intelligence: MDAI 2021



Research Questions

• How can we semi-automate output checking using machine learning ? 
➢ How can we extend Domingo et al., (2021) work, i.e., on real data?
➢ How can we involve human checkers in the process of training 

machine learning models? 
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Solution: COACH
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Experimentation Setup
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Data Sets

• Simulated data (following Domingo et al., (2021)): 

• 14 rules of thumbs

• 200K records in the training data and 14K records in the test data

• Every rule has approx. 14700 records in the training data and 
1000 in the test data

• Real data

• 125 records dominated by frequency table, magnitude table, and 
regression model

• Pre-processing step

Experimental setup
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Experimental Setup
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• Neural network

• LightGBM (LGBM)

• Random classifier

Experimental setup

10



Experimentation Results
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Prediction performance
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Evaluation of model trained on simulated data 
applied to real test data
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Incorporating Human-in-the-loop with COACH
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Incorporating Human-in-the-loop with COACH
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Incorporating Human-in-the-loop with COACH
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Utilizing Global SHAP Values

Global interpretability: the collective SHAP values show how much each predictor 
contributes, either positively or negatively, to the target variable.
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Utilizing Local SHAP Values

Local interpretability using reasoning plots for an individual case in test data.
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Conclusion & Future Work
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• Extend Domingo et al, (2021).

• Create COACH: a novel approach to semi-automate output 
checking

• Human checkers are in-the-loop

• Utilize global and local SHAP values for explainability

Conclusion
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• Improving COACH with AOCH (Assisted Output 
CHecking)

• Extending COACH
• Explore other types of input data, e.g., features and pre-

processing

• Cross-platform: other statistical offices

Future work



COACH App Home      Why-SDC       HITL       Feedback

Facts that matter
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