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• SDC → protect individuals

Intro: noisy methods and bounds in a nutshell

SEX \\ POB* Total Country Outside

Total 42 35 7

Male 22 17 5

Female 20 18 2

* Place of birth (POB)



SEX \\ POB Total Country Outside

Total 42 35 7

Male 22 C C

Female 20 C C

Intro: noisy methods and bounds in a nutshell

• SDC → protect individuals

• old-school suppression often 

inefficient and inconsistent
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SEX \\ POB Total Country Outside

Total 42 37 7

Male 23 15 4

Female 21 16 3

• SDC → protect individuals

• old-school suppression often 

inefficient and inconsistent

• Noise in action: Is this better?
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… a closer look at a single 

statistic …



… a closer look at single statistic level: intrinsic uncertainty
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… a closer look at single statistic level: intrinsic uncertainty vs. noise
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… a closer look at single statistic level: intrinsic uncertainty vs. noise
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Intro: noisy methods and bounds in a nutshell

… a closer look at single statistic level: intrinsic uncertainty vs. noise



… a closer look at single statistic level: noise distributions
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Intro: noisy methods and bounds in a nutshell



• Noise distributions: how long is the tail?
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• Noise distributions: how long is the tail?
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e.g. relaxed (ε,δ)-DP or cell key method (CKM)

… but strict ε-DP

Intro: noisy methods and bounds in a nutshell
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• 2021 EU census: ca. 110 000 

Local Administrative Units

(~ municipalities), of which

➢43 395 with <500 people

➢8 502 with <100 people

➢866 with <20 people

• Could we accept here e.g.

Pr(|noise|>100) = 0.1% or more?

❑ Yes

Utility flaws of unbounded noise

❑ No
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• E.g. 2020 U.S. census test setup 

with moderate tabular ε = 0.1

• expectation for individual LAU 

counts to obtain noise of relative 

size ±20, ±50 and ±100%

• analytical estimation (bins) and 

numerical simulation (lines)

Utility flaws of unbounded noise: counts



• E.g. 2020 U.S. census test setup 

with restrictive tabular ε = 0.025

• expectation for individual LAU 

counts to obtain noise of relative 

size ±20, ±50 and ±100%

• analytical estimation (bins) and 

numerical simulation (lines)

Utility flaws of unbounded noise: counts



• E.g. 2020 U.S. census test setup 

with generous tabular ε = 0.4

• expectation for individual LAU 

counts to obtain noise of relative 

size ±20, ±50 and ±100%

• analytical estimation (bins) and 

numerical simulation (lines)

Utility flaws of unbounded noise: counts



Cidamón, La Rioja, Spain
ES230_26048

source: Wikipedia

source: OpenStreetMap

2011 census
U.S. setup

(ε = 0.1)

Total 30 -17

Male 20 -1

Female 15 -9

Utility flaws of unbounded noise: counts

• Even worse: several counts (e.g. 

Total, Males, Females) are distorted 

consistently

• E.g. 2020 U.S. census test setup 

with with moderate tabular ε = 0.1

https://en.wikipedia.org/wiki/Cidam%C3%B3n
https://www.openstreetmap.org/search?query=cidamon#map=10/42.5834/-2.8400


• Even worse: several counts (e.g. 

Total, Males, Females) are distorted 

consistently up or down

• E.g. 2020 U.S. census test setup 

with with moderate tabular ε = 0.1

• still ~20 small LAUs where ±100%

would happen (~100 LAUs with 

±50%)

Utility flaws of unbounded noise: counts



• take very simple ratio indicator e.g. share of females: 

➔ standard deviation of r as a function of generic noise variance V:

Utility flaws of unbounded noise: ratios



• take very simple ratio indicator e.g. share of females: 

➔ standard deviation of r as a function of generic noise variance V:

• to quantify bound effects, approximate noise effects i = i0+xi (i = F, T) as

with

➔ in the presence of a bound E:
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• take very simple ratio indicator e.g. share of females: 

➔ standard deviation of r as a function of generic noise variance V:

• to quantify bound effects, approximate noise effects i = i0+xi (i = F, T) as

with

➔ in the presence of a bound E:

• this can be tested numerically with noise samples from CKM (e.g. V=3, E=6) 

and for comparison from unbounded ε-DP setup (ε=0.8)

Utility flaws of unbounded noise: ratios



sanity check on sdr

Utility flaws of unbounded noise: ratios



bound effects in max|r-r0|

➢ bounded noise (CK)

consistently below model

➢ unbounded noise (DP) 

consistently above model

➢ typical size of difference:

~5 % points across bins

➢ i.e. huge relative diff. for 

small r < 0.1 (e.g. minorities)

Utility flaws of unbounded noise: ratios



• Now would you bet all your money on a guess for the true count of the …

❑ … total population?

❑ … country-born males?

❑ … total females?

❑ … total foreign-born?

Additional disclosure risks of bounded noise

SEX \\ POB Total Country Outside

Total 42 37 7

Male 23 15 4

Female 21 16 3

each count with noise variance V = 1

and noise bound E = 2



• Now would you bet all your money on a guess for the true count of the …

❑ … total population?

❑ … country-born males (= 17)

❑ … total females?

❑ … total foreign-born?

• But how often does this happen?

SEX \\ POB Total Country Outside

Total 42 37 = 35+2 7

Male 23 15 = 17-2 4

Female 21 16 = 18-2 3

each count with noise variance V = 1

and noise bound E = 2

Additional disclosure risks of bounded noise



• linear constraints in breakdowns – e.g. dichotomous SEX = {F,M,T}:

expectation ➔ bound estimator
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• linear constraints in breakdowns – e.g. dichotomous SEX = {F,M,T}:

expectation ➔ bound estimator

prob. to reveal E from a single 3-tuple:

➔ p1 fixed by noise distribution (e.g. CKM pars. V and E)

Additional disclosure risks of bounded noise



• linear constraints in breakdowns – e.g. dichotomous SEX = {F,M,T}:

expectation ➔ bound estimator

prob. to reveal E from a single 3-tuple:

➔ p1 fixed by noise distribution (e.g. CKM pars. V and E)

• number of 3-tuples needed to disclose E at c.l. α:

➔ available m fixed by table output

Additional disclosure risks of bounded noise



➔ Knowing the full output, the

risk can be quantified

systematically – e.g. for the 

2021 EU census output:

m: number of 3-tuples needed in output 

to get ca. one E-disclosive noise pattern

black boxes showing where m exceeds  

the number of available 3-tuples for 

Malta (dashed) and Germany (solid)

Additional disclosure risks of bounded noise

Vanilla CKM from SDCTools on GitHub

https://github.com/sdcTools/CensusProtection


• in noisy approaches to confidentiality, whether the noise is bounded or 

unbounded is a key question with consequences for both utility and disclosure 

risks

Conclusions



• in noisy approaches to confidentiality, whether the noise is bounded or 

unbounded is a key question with consequences for both utility and disclosure 

risks – shown today:

• utility – unbounded noise cannot guarantee useful outputs on all small areas in 

a large output programme (e.g. EU census LAU data)

➔ holds for raw counts and more pronounced for shares/ratios, even with

moderate noise variance (e.g. V ~ 3)
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• in noisy approaches to confidentiality, whether the noise is bounded or 

unbounded is a key question with consequences for both utility and disclosure 

risks – shown today:

• utility – unbounded noise cannot guarantee useful outputs on all small areas in 

a large output programme (e.g. EU census LAU data)

➔ holds for raw counts and more pronounced for shares/ratios, even with

moderate noise variance (e.g. V ~ 3)

• risks – bounded noise is additionally vulnerable to constraint exploits

➔ risk can be controlled by tuning noise to output complexity, with

moderate noise parameters (V ~ 2, E ~ 5)

Conclusions



Thank you
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