Spatial SDC experiments and evaluations with multiple countries comparison

Johannes Gussenbauer (STAT), Julien Jamme (INSEE), Edwin de Jonge (CBS), Peter-Paul de Wolf (CBS), Martin Möhler (Destatis)

UNECE Expert meeting on Statistical Data Confidentiality 2023 26.09.2023-28.09.2023 Weisbaden, Germany

This work is part of the Centre of Excellence on SDC (CoE on SDC) and is co-funded by the European Commission by means of grant agreement number 899218, 2019-BG-Methodology.

Overview

• Experiment Setup

• Risk and Utility Measures

• Results and Discussion

Experiment Setup

- 'Census-like' datasets from 4 countries
 - Austria, France, Germany, Netherlands

Tabular data on person level with coordinates of residence and grid cells
INSPIRE2014 standard ETRS89-LAEA

• Aim: test and compare several methods for protecting grid data

'Census-like' dataset and map

Person ID	Grid cell ID	Ys	Xs	
0000001	500mN28215E 46275	2821500	4627500	
0000002	500mN28085E 47890	2808500	4789000	
0000003	500mN28025E 47925	2802500	4792500	
00000004	500mN28120E 47985	2812000	4798500	

Experiment Setup

- 1. Build table on count data (~number of people) by grid cells (L000500)
- 2. Calculate risk measures
- 3. Apply SDC methods using the R-Package sdcSpatial
- 4. Re-evaluate risk measures and calculate information loss

• Cell removal: suppresses the sensitive cell

• Cell removal: suppresses the sensitive cell

Protected map

- **Quad tree**: aggregate sensitive cells with its three neighbours
- Can *zoom-out* multiple times

- **Quad tree**: aggregate sensitive cells with its three neighbours
- Can *zoom-out* multiple times

Protected map

 Kernel density smoothing: mass of population is spread out over a neighbouring region

$$\hat{f}_h(x, y) = \frac{1}{h^2} \sum_{i=1}^N K\left(\frac{x - x_i}{h}, \frac{y - y_i}{h}\right)$$

K(x, y) bivariate Gaussian kernel

Original map

 Kernel density smoothing: mass of population is spread out over a neighbouring region

$$\hat{f}_h(x, y) = \frac{1}{h^2} \sum_{i=1}^N K\left(\frac{x - x_i}{h}, \frac{y - y_i}{h}\right)$$

K(x, y) bivariate Gaussian kernel

Protected map

Risk and Utility Measures

- Grid cell C_i is at risk if it contains fewer than k people
- Risk measure ~ share of grid cells/population which are *at risk*

$$R^{(C)}(k) := \frac{1}{M} \sum_{j=1}^{M} R_j(k) \qquad \qquad R^{(N)}(k) := \frac{1}{N} \sum_{j=1}^{M} R_j(k) \cdot r_j$$

with

$$R_{j}(k) = \mathbb{I}[r_{j} < k] \quad \forall j = 1, ..., M$$
$$r_{j} = \sum_{i=1}^{N} \mathbb{I}[(x_{i}, y_{i}) \in C_{j}] \quad \forall j = 1, ..., M$$
$$(x_{i}, y_{i}) \text{ coordinates of person } i$$

Risk and Utility Measures

• (normalised) Hellinger's distance between raster **R** and **R**'

$$HD(\mathbf{R},\mathbf{R}') = \frac{1}{\sqrt{2}} \sqrt{\sum_{j=1}^{M}} \left(\sqrt{\frac{r'_j}{\sum_{j=1}^{M} r'_j}} - \sqrt{\frac{r_j}{\sum_{j=1}^{M} r_j}} \right)^2$$

- Easy calculation
- Applicable to tabular data

• Does not account for spatial distribution

Risk and Utility Measures

- Kantorovic-Wasserstein Distance (KWD) or Earth Mover Distance
- Minimal cost to transport a mass from one distribution to another

Shift around distribution mass of Δr_{jk} between the *j*th and *k*th grid cell, until **R**' is transformed into **R**

- Considers spatial distribution
- Intuitive interpretation

- Difficult to compute ~ R-Package SpatialKWD
- Needs methodological choices
 - How to deal with different mass in ${\bf R}'$ and ${\bf R}$
 - Focus Area
 - Convex hull true/false

Results

- Depending on the country slightly different setup
 - CBS, DESTATIS, STAT: 500m \times 500m, k = 5
 - INSEE: 200m \times 200m, k = 11
- Each country selected **4** specific focus areas
 - Protection applied on whole data set beforehand \rightarrow focus in on area of interest
 - Can deal with mass missmatch
 - Focus areas contain different population distributions
 - Homogeneously populated, hot spots, country borders and uninhabitable terrain.

Island of La Réunion, use case INSEE; Red squares are the focus areas

Results

Conclusions and Discussion

• Cons and Pros of protection methods

Method	Pros	Cons	
Cell removal	No artificially inhabitable cells	low density regions might be deleted	
	hot spots kept intact	reidentification risk through differencing	
Quadtree	easy to apply	overly blocky structure	
	utility loss rather small	can enlarge hot spots	
		can populate uninhabitable cells	
Smoothing	Hot spots are usually kept intact	Applied to whole data	
		can populate uninhabitable cells	

Conclusions and Discussion

- HD and KWD usually rank methods similar
 - Protection was only applied very locally
 - Some methodological choices needed before applying KWD
 - Impact of different specifications needs more investigation
 - Looking at focus areas instead of whole country more insightful
- Possible additions/improvements to sdcSpatial:
 - Respect borders or natural barriers during protection
- Further analysis needed for
 - Differencing attacks
 - Compare more utility measures (Moran's I, Spatial K-function, Hotspot preservation, preservation of population by type of land cover, ...)
 - Compare with more *classical* methods like record swapping or cell key

Code for running experiment on dummy data on github: <u>https://github.com/sdcTools/sdcSpatialExperiment</u>