A Disclosure-Based Framework for Comparing Frequency Table Protection

DANIEL P. LUPP AND ØYVIND LANGSGRUD

Background

- Work as part of a grant for publishing multigrid geographical data on the 2021 population census
- Goal: compare perturbative methods to determine best solution for Norway

This talk:

- Present comparison framework
- Discuss results for 2021 population census

Comparison framework

- Measure risk
 - Describe disclosure scenarios
 - Count and compare disclosures in original and perturbed data
 - Exclude methods with unacceptable risk
- Measure utility
 - Of remaining measures, keep methods with highest utility

Disclosure scenario Attribute disclosure

• all records in a table marginal share the same attribute for a given variable

Municipality	Unemployed	Employeed	Self- employed	Total
M1	12	0	0	12
M2	5	6	0	11

Disclosure scenario Attribute disclosure when total is 1*

Similar to ordinary attribute disclosure, but limited to marginal cells where the population total is (known to be) 1

Municipality	Un	employed	Employeed	Self- employed	Total
M1	3		0	0	<u>3</u> (1)
M2	5		6	0	11

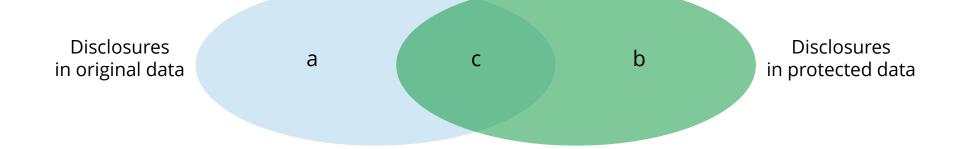
*relevant in, e.g., sparsely populated countries, where even large geographical areas can contain very few inhabitants

Disclosure scenario Negative attribute disclosure

• When no record contributing to a marginal cell has a certain attribute

Municipality	Unemployed	Em	ployeed	Se en	lf- 1ployed	Total
M1	12	0		0		12
M2	5	6		0		11

Disclosure scenario Disclosure of existence


• Any non-zero frequency discloses that at least one record has a certain attribute

Municipality	Une	employed	Em	ployeed	Self- employe	Tot	al
M1	12		0		0	12	
M2	5		6		0	11	

Measuring risk

• Use measures from information retrieval

- Precision: $\frac{c}{b}$ Approx. probability that a disclosure is real
- Recall: $\frac{c}{a}$ Proportion of real disclosures in «visible» data

Measuring utility

• Maximum absolute deviation

 $\max_i |y_i^* - y_i|$

• Average absolute deviation

$$\frac{1}{n}\sum_{i=1}^{n}|y_{i}^{*}-y_{i}|$$

• Hellinger distance

$$\sqrt{\frac{1}{2}\sum_{i=1}^{n}\left(\sqrt{y_{i}^{*}}-\sqrt{y_{i}}\right)^{2}}$$

Applied to 2021 population census grids

• Cell key method

 \circ Idea: noise based on which records contribute to a cell

No additivity in tables

Targeted record swapping

• Idea: swap units with risk of disclosure with units from neighboring areas

• Small count rounding

• idea: round the inner cells (microdata aggregated to frequencies)

Maintains additivity within and consistency across tables

Different flavors considered

Comparison was done with many (combinations of) methods. For illustration, we only show:

• Cell key method with/without targetted record swapping:

Labels CK and CKswk2r01 respectively

- Small count rounding:
 - SCRsimple: simple method, inner cells that are 1 or 2 are rounded to 0 or 3
 - SCRzeros: same as simple, but zeros rounded as well
 - SCRforceInner: all inner cells are rounded to multiple of 3

Risk threshold

Need to define what is «acceptable risk»

- This was difficult, so we rather defined «unacceptable risk» as precision or recall at 100%
- This was actually sufficient to reach a conclusion

Results: Risk

TABLE 2. Attribute disclosure risk (ordinary and where original population is 1) measured as precision and recall.

54	Prec	ision	Recall			
Method	Ordinary	Total is 1	Ordinary	Total is 1		
СК	61.09	100.00	67.50	26.27		
CKswk2r01	42.88	58.36	42.38	58.04		
SCRsimple	59.84	100.00	63.14	24.43		
SCRzeros	55.95	85.05	57.54	23.97		
SCRforceInner	52.92	79.48	53.15	22.48		

TABLE 3. Risk of disclosure of existence measured as precision and limited to cases where the perturbed frequency has a specific value (1-6). Values less than 3 are not published, hence the first two columns are empty.

Method	1	2	3	4	5	6
СК			100.00	100.00	100.00	100.00
CKswk2r01			80.99	84.88	88.89	92.89
SCRsimple			100.00	100.00	100.00	100.00
SCRzeros			92.77	100.00	100.00	99.71
SCRforceInner			89.65			99.16

:istisk sentralbyrå stics Norway

Results: Utility

 TABLE 4.
 Utility measures for each perturbative method.

	Maximum absolute		ox. 35% of original cell valu	ue
Method	deviation	deviation	rance	
СК	5	109	886.6	
CKswk2r01	13401	2.098	1245.8	
SCRsimple	17	0.944	891.5	
SCRzeros	15	1.008	968.6	
SCRforceInner	19	1.304	1052.3	

Concluding remarks

- Comparison done with Norwegian use case in mind
- Possible refinements: consider loss of information as utility measure
 - E.g., Kullbach-Leibler divergence, variation of information
- Risk measures can work on non-perturbative measures, but work is needed to compare utility loss between non-perturbative and perturbative measures.

Takk!

Statistisk sentralbyrå Statistics Norway