Japan's Policy for Automated Driving

Hirotoshi INAYOSHI MLIT Japan

- (1) Purpose of Promoting Automated Driving
- (2) Current Status of Automated Driving
- (3) Challenges for Automated Driving
- (4) Major Examples of AD Mobility Services

2. Japan's Study to Ensure Safety of ADVs

- (1) Consideration about the Safety Level
- (2) Consideration about the Operating Environment
- (3) Scenario Based Study
- (4) Securing Operating Environment

- (1) Purpose of Promoting Automated Driving
- (2) Current Status of Automated Driving
- (3) Challenges for Automated Driving
- (4) Major Examples of AD Mobility Services

2. Japan's Study to Ensure Safety of ADVs

- (1) Consideration about the Safety Level
- (2) Consideration about the Operating Environment
- (3) Scenario Based Study
- (4) Securing Operating Environment

1.(1) Purpose of Promoting Automated Driving

Number of fatal accidents by violations of traffic rules (2021)

5%: Caused by pedestrians, etc.

Number of traffic fatalities and injuries(2021)

95%

Driver's

Violations

Fatalities	2,636
Injuries	362,131

Expectations of AD (Example)

Improve productivity

Assistance for elderly

1. (2) Current Status of Automated Driving

1. (3) Challenges for Automated Driving

	Private Vehicle	Mobility Service	Logistics Service
Govt's., Goals	Realize level 4 AD on motorway (~2025FY)	Deploy automated mobility services over 50 areas (~2025FY)	Realize level 4 AD on motorway (2025FY~)
Achieve- ment	✓ Type approval for the vehicle equipped with Level 3 ADS dedicated to drive on congested motorway (Mar. 2021)	 ✓ Providing support to field test projects conducted by local governments. (2022FY~) ✓ Deployment of Level 4 Automated Mobility Services in Fukui pref. (May. 2023) 	✓ Conduct field test of truck platooning technology. (Feb. 2021)
Current Efforts	Developing safety regulations for advanced automated driving functions.	Conducting a number of field tests in order to expand AD mobility services.	Developing level 4 automated driving truck technology.

1. (4) Major Examples of AD Mobility Services

Light-weight EV Bus

Public road field test of an automated driving system using a EV bus

Operator: Tier 4

Middle-weight Bus

Public road field test of an automated driving system using a conventional bus

a conventional bus

Operator: AS mobi

Small Cart

Public road field test of an automated driving system using a small cart.

Operator: AIST

Vehicle without Steering Wheel

Demonstration on public roads of a bus designed for automatic driving

Operator: BOLDLY

Bus Rapid Transit System

Automated driving using a heavy duty bus on BRT road.

Operator: JR East

- (1) Purpose of Promoting Automated Driving
- (2) Current Status of Automated Driving
- (3) Challenges for Automated Driving
- (4) Major Examples of AD Mobility Services

2. Japan's Study to Ensure Safety of ADVs

- (1) Consideration about the Safety Level
- (2) Consideration about the Operating Environment
- (3) Scenario Based Study
- (4) Securing Operating Environment

2.(1) Consideration about the Safety Level

Safety Level

	Physically difficult to avoid	Either decision causes damage.	
Events	Sudden rush out	Trolley Problem	
	Physical limit: human being = system However, each "pros" and "cons" is different. Ex) Response speed Human being < System Perception Human being > System	Equally difficult for both human beings and systems. However, society's acceptance of each may differ. (If it were a person, it would be no problem. But what if it's a system?	
Issues	Responsibility of System (To what extent should the system handle?)	Decision-making of System (How should the system determine?)	

Safety levels acceptable to the society

2.(2) Consideration about the Operating Environment

Operating Environment

Build and maintain a safe operating environment

2. (3) Scenario Based Study

Safety Level

Operating Environment

2. (3) Scenario Based Study

<u>Scenario Example (Cut In - Bicycle)</u>

Scenario Description

 A bicycle will change its course suddenly to pass a standstill vehicle parked on the street in front of the ego-vehicle.

Road Topology and road objects:

Two-lane road, with a vehicle parked on the street.

Other actors' behavior:

- At the beginning of the scenario, a bicycle is traveling in front of the ego-vehicle.
- When the bicycle approaches the parked vehicle, it starts to pass around the parked vehicle.

Result of study:

- Key 1:
 C&C human drivers can avoid collision by decelerating after the bicycle started lateral movement
- Key 2:
 C&C human drivers can anticipate bicycle's movement and decelerate in advance, and follows behind the bicycle.

2. (4) Securing Operating Environment

Example 2: Installing an automated driving support system

- (1) Purpose of Promoting Automated Driving
- (2) Current Status of Automated Driving
- (3) Challenges for Automated Driving
- (4) Major Examples of AD Mobility Services

2. Japan's Study to Ensure Safety of ADVs

- (1) Consideration about the Safety Level
- (2) Consideration about the Operating Environment
- (3) Scenario Based Study
- (4) Securing Operating Environment

3. Future Perspective

Expand the ODD step by step toward complex traffic environments

- In Japan, field tests on public roads are being conducted in various areas to launch automated vehicles as mobility services in 50 areas and above by 2025FY.
- MLIT is working to clarify safety levels, which are at least C&C human driver's level, that respond to various risks in operations and develop a safe operating environment.
- Japan will continue to contribute developing guidelines in WP.29 based on Japan's experience to encourage the development and deployment of automated vehicles while ensuring safety.

Thank you for your attention.