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Abstract
Noise-based approaches to protecting statistical confidentiality have become increasingly popular over the
past decade, including for official population statistics. Many different concepts and practical methods exist
meanwhile and have been studied at length. There are some generic risk/utility aspects shared by many of
them, for instance the particular effects of bounding the maximum noise magnitude by a fixed value (or not).
We focus on such effects of noise bounds in tabular population statistics outputs, showing on the one hand that
the additional disclosure risks related to bounding noise can be controlled and on the other hand that there are
important specific utility benefits of bounding noise in such outputs.

∗The views expressed are purely those of the author and may not in any circumstances be regarded as stating an official position of
the European Commission.



1 Introduction

While traditional SDC methods tend to focus on the protection of small counts only,1 methods based on noise
injection have been increasingly studied over the past two decades. There is meanwhile a rich choice of well-
tested noise methods and protection setups available, with all kinds of different characteristics and often tailored
to specific risk or utility priorities. Despite this rich variety, one of the rather generic qualitative features of
many noise methods is whether the noise is bounded, i.e. its magnitude is limited by a fixed finite parameter, or
not.
This paper addresses noise-based approaches to statistical confidentiality in official population statistics with a
focus on specific risk and utility implications stemming from the presence—or absence—of a noise bound. A
further focus on census-like statistics is chosen because of the global relevance (2020/2021 census round), and
because unweighted counts simplify technical discussions without major loss of generality in the key issues.
There are two classes of such methods, each representing one of the two scenarios of bounded vs. unbounded
noise, that have indeed been used in census production for the global 2020 round: On the one hand, the U.S.
Census Bureau has adopted a strictly differentially private2 noise method for the 2020 U.S. census (Abowd,
2018; Abowd et al., 2022), which received mixed reactions down to grave utility concerns (Ruggles et al., 2019;
Santos-Lozada et al., 2020) and ensuing debates (Muralidhar and Domingo-Ferrer, 2023). It is a characteristic
feature of strictly differentially private methods that the underlying noise must be unbounded (Dwork et al.,
2006). On the other hand, the European Statistical System3 has developed recommendations for a harmonised
protection of 2021 EU census outputs (Antal et al., 2017; De Wolf et al., 2019a,b) based on the cell key
method (Fraser and Wooton, 2005; Marley and Leaver, 2011; Thompson et al., 2013). This method provides
a dedicated parameter to control the noise bound explicitly. For the quantitative analysis of specific risk and
utility aspects related to noise bounds, these two methods are employed in this paper as generic representatives
of their respective classes (with or without noise bound).

2 Key concepts and terms used

Differential privacy (DP) was initially proposed by Dwork et al. (2006) as a rigorous privacy or risk measure.
The concept is appealing from a risk-aware view because it gives a DP guarantee to each individual contributor
of a given statistic; cf. annex A.1. This can come as a strict Y-DP guarantee with a single privacy budget
measure Y, and as a relaxed „Y� X”-DP guarantee with a second measure X quantifying the potential leakage from
a strict guarantee. Various noise protection methods were proposed specifically to implement a certain (strict
or relaxed) DP guarantee by construction; see e.g. Rinott et al. (2018).
Noise distributions are probability distributions over the range of the statistical outputs of interest, e.g. non-
negative integers in population counts. The noise distribution is used to draw a dedicated random noise term G

to be added to each statistical value in the output. Typically, risk and utility considerations influence the detailed
design shape of the distribution, but many broad aspects can be studied rather generically based on just two
parameters: noise variance +4 and bound � (see next paragraph). Examples in annex A.2 include manifestly
Y-DP distributions and those used by the cell key method (Marley and Leaver, 2011).
Bounded noise comes from a noise distribution with a parameter � ¡ 0 such that Pr „ jG j ¡ �” � 0, i.e. limiting
the magnitude of any noise term G. Note importantly that strict Y-DP, in contrast to „Y� X”-DP, does not allow

1E.g. suppression or rounding of small counts, topcoding or general recoding of rare attributes.
2See section 2 and annex A.1 for a short outline of differential privacy.
3The joint body of Eurostat and the national statistical institutes of all EU countries and Iceland, Liechtenstein, Norway and

Switzerland. It is responsible for the development and quality assurance of official European statistics.
4With a conservative assumption that the distribution is reasonably centred, as is the case with the Laplace, Gaussian and derived

discrete distributions used in this paper.
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� Ÿ 1 (see annex A.2). A key goal of this paper is to quantify speci�c utility �aws ofunboundednoise
(section 3), but also additional disclosure risks ofboundednoise (section 4).

3 Speci�c utility �aws of unboundednoise

This section concentrates on generic tail e�ects of unbounded noise distributions, using the vanillaY-DP two-
tailed geometric distribution of Eq. (11) (annex A.2) as a generic toy method. There are already many studies
assessing utility aspects of DP methods or testing them in statistical applications�e.g. Machanavajjhala et al.
(2008); Dwork and Smith (2010); Ghosh et al. (2012); Hsu et al. (2014); Wang et al. (2015); Petti and Flaxman
(2019). In particular, Rinott et al. (2018) is a key reference for population statistics, but all DP noise distributions
there were truncated (i.e. bounded and thus `just'¹Y– Xº-DP), so results do not cover tail e�ects from unbounded
noise. On the other hand, the U.S. Census Bureau used unboundedY-DP noise for its 2020 census (Abowd,
2018), which triggered severe utility concerns (Ruggles et al., 2019; Santos-Lozada et al., 2020). Petti and
Flaxman (2019) assessed some utility implications of published test setups, but explicitly left the issue of tail
e�ects open.

3.1 Parameter setup

Aiming for a realistic setup in a census context, we try to guess the incrementalY budget spent on a single
output table in the hypothetical U.S. census DP scenario described in Petti and Flaxman (2019). There,
discreteY-DP noise is drawn from the two-tailed geometric distribution with aglobal privacy budgetYglobal 2
f 0•25–0•5–1•0–2•0–4•0–8•0g(Gar�nkel, 2019; Petti and Flaxman, 2019). This global budget is then distributed
across six hierarchical geographies (Gar�nkel, 2019). Certain optimisations may shift the relative shares away
from an even split, but we assume1•6 for practical purposes as Petti and Flaxman (2019) do. Further intricacies
include that noisy total population counts are generated for each geographic level5 and all further breakdowns
are optimised to sum to those totals. The reference also suggests that at each geographic level,67•5 % of the
budget are spent on the more important person aggregate tables. In summary, we assume

Ytable = 67•5 %� 1•6 � Yglobal ' 10 %� Yglobal– (1)

soYtable 2 f0•025–0•05–0•1–0•2–0•4–0•8gfor tabular (count-level)Y-DP noise. This corresponds to noise sizes,
in terms of noise variance+, at single count level of

+ 2 f3200–800–200–50–12•5–3•125g–
p

+ 2 f56•6–28•3–14•1–7•1–3•5–1•8g•

For comparison, the CK variances tested for the 2021 EU census round are in the range+ 2 »1–5¼(Antal et al.,
2017), so barely touching the above DP range at its risky end (Ytable & 0•4). Moreover, no tails e�ects¡ � are
present by de�nition.

3.2 Demographics at high geographic detail

Accurate demographics at a high geographic detail is one of the key unique census features in many world
regions. For instance, the 2021 EU census round will cover ca.110 000local administrative units (LAUs) with
a total population of roughly4•5� 108 people across the whole EU.6 Coincidentally this matches well with U.S.
census outputs at tract level, covering ca.75 000geographic units (Gar�nkel, 2019) with a total population of
3•3 � 108 people. However, the following analysis is intended solely to discuss e�ects of a generic unbounded
noise scenario on key EU census outputs. Whether any of the conclusions may apply to tract-level U.S. census

5Except at State level, where the U.S. Constitution requires the U.S. Census Bureau to publish unperturbed totals (Petti and Flaxman,
2019).

6The LAU data used for this section are 2011 census outputs from all EU Member States as available at ec.europa.eu/CensusHub2.
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Figure 1. Distribution of populated LAUs with� 500 residents across the total population
count (left) and across EU countries (right).

outputs depends critically on the correctness of parameter assumptions, Eq. (1), and also on the comparability
of population distributions across EU LAUs vs. U.S. tracts.
The statistics of LAUs There is an extreme variety of total population by LAU, with populated units ranging
from O¹1º residents (450 LAUs withŸ 10 people) to3•3 � 106 residents (Berlin; in total 14 LAUs with¡ 106

people). Now the key point is that statisticsacrossLAUs is only part of the purpose of these census results; they
are also the only source to obtain accurate demographic information onindividualLAUs. For this purpose, even
very unlikely but very large noise outliers can have severe, maybe unacceptable, consequences. Furthermore, if
the method of adjusting inner tables to their geographic totals after drawing noise is applied (Petti and Flaxman,
2019), a single large noise outlier on a given small LAU total would systematically and heavily distort all
statistics published for that LAU. Therefore, the subsequent focus is on LAUs with countsŸ 500illustrated in
Fig. 1.
The demographics of LAUs To add a demographic element, we include a sex breakdown into females, males
and a total, i.e.SEX = f �– "– ) g as in section 4. This is the spine of all LAU-level person tables in table
groups 3 and 8 of the 2021 EU census programme7. It also re�ects a possible notion of picking more important
`aggregate tables' to which all further breakdowns would then be adjusted (Petti and Flaxman, 2019). To cover
both large distortions of totals as well as of sex balances, the counts of� , " and) are treated independently.
In total, there are� 167 000LAU counts of� , " or ) Ÿ 500in the 2011 data.
Estimating distortions In theYrange of Eq. (1), the discrete two-tailed geometric distribution used already
converges well to the continuousLap¹1•Yº. So the cumulative inverse distribution function ofLap¹1•Yº can be
used to estimate the probability for the noise magnitudejGj to exceed a certain threshold� :

Pr¹jGj ¡ � jYº = exp¹� Y� º • (2)

This probability is plotted in the lower-right of Fig. 2 as a function ofY inside the relevant range, and for
� 2 f 20–50–100g. Now Eq. (2) can be convoluted with the distribution of LAU counts (left plot in Fig. 1) to
estimate how many LAU counts in each bin will end up with noise exceeding a given absolute relative error
RE = 20, 50 or 100 %. These binned estimates can be tested by sampling some noise on the LAU data, and
counting occurrences of RE magnitudes above a given threshold. Fig. 2 (left column) overlays the estimates
with counts found in the noise-sampled data. Clearly the analytic estimates describe very well the sampled
noise data.

7Commission Regulation (EU) 2017/712 of 20 April 2017 establishing the reference year and the programme of the statistical data
and metadata for population and housing censuses provided for by Regulation (EC) No 763/2008 of the European Parliament and of the
Council (OJ L 105, 21.4.2017, p. 1).
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Figure 2. Log-linear estimates for frequencies of relative error (RE) magnitudes exceeding
20 % (blue), 50 % (yellow) and 100 % (orange) occurring in LAU counts, by total count:
bins show the analytic estimate obtained from Eq. (2), while lines show the actual distortion
frequencies found in the data with noise sampled.
The rows varyY = 0•025(top) to0•1 (middle) to0•4 (bottom). The left column counts single
observations (� , " or ) ) exceeding a given RE, while the right column counts LAUs where� ,
" and) all exceed RE in the same direction.
The lower right histogram (� , " and) distorted in the same direction forY = 0•4) is almost
empty and thus replaced by a plot illustrating Eq. (2): log-linearPr¹jGj ¡ � º as a function of
Y with � = 20 (orange), 50 (yellow) and 100 (blue). Vertical dashed lines indicateY choices
from Eq. (1), while horizontal dotted lines show 1 over the number of LAUs with) � � = 20,
50 or 100.
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Distortions of single countsLooking now at the actual distortions in the left column of Fig. 2, one �nds a
sizeable dependence onY, which is not surprising due to the exponential scaling in Eq. (2). In fact, noise
distortions of single counts in these LAU statistics may be said to become manageable fromY ¡ 0•4 (and we
do not show the upper end of theYrange,Y = 0•8, for this reason). However, forY . 0•1 there are many LAU
counts expected withjREj ¡ 50 %or even¡ 100 %.
For instance, withY = 0•025 (

p
+table = 56•6) there are1 648observations above 100 a�ected by� 100 %or

more, and still 87 observations above 200 withRE� 100 %or more. Recall that every third of these observations
describes a total count, and every 6th a total count withRE Ÿ � 100 %, thus wiping out the whole population
of that LAU. The largest LAU where this happens is Aragnouet, France, with originally 239 residents (now
� 78). The situation does improve withY= 0•1 (

p
+table = 14•1), but we still �nd 122observations above 40 and

11 observations above 60 withRE� 100 %or more. The largest depopulated LAU is again in France, Mélagues
with originally 63 residents (now� 9).
Distortions of entire LAUs The �ndings on single counts are disconcerting in their own right, but there is
an added danger: if the total count is distorted so severely and inner table cells are adjusted to the new total9,
entire LAU populations may disappear from the census output. If inner cells are not adjusted, constraints like
� ¸ " = ) can be exploited to improve knowledge a bit; e.g.b) = ¹� ¸ " ¸ ) º•2.
However, such ad hoc `repair' estimates exploiting 3-tuple constraints will not always help. This is the case
when� , " and) are all distorted in thesamedirection (�broadband distortions�), so the distorted 3-tuple is
internally consistent and no ad hoc estimate can improve the user's knowledge. To quantify this, one can count
all LAUs a�ected by such broadband distortions; results are shown in the right column of Fig. 2. ForY= 0•025
there are 28 LAUs above 40 residents and 4 LAUs above 80 with a broadband distortion� 100 %or more. The
largest such LAU is Landremont, France with� = 61 ! � 8, " = 74 ! � 26 and) = 135 ! � 83. For
Y = 0•1, most broadband distortions of� 100 %only occur in the lowest count bin¹0–20¼, but there is one
above: Cidamón, Spain with� = 15 ! � 9, " = 20 ! � 1 and) = 30 ! � 17. Broadband distortions� 20 %
still occur for 61 LAUs with 100 or more residents. The largest LAU where this happens is Ellend, Hungary
with � = 112! 74, " = 94 ! 65 and) = 206! 158. Even distortions around� 20 %may have signi�cant
policy impacts at local level.

3.3 Population shares at high geographic detail

Going beyond simple population counts provides further insights into unbounded noise e�ects. For example, we
consider one of the simplest derived indicators within the setting of this section: the share of femalesAB � •)
in any given geographic unit (LAU here).10 For the unbounded noise, we choose theY-DP setup with tabular
Y = 0•8 of section 3.1, and for the bounded noise a CK setup with+ = 3•125 (corresponding toY = 0•8,
cf. section 3.1) and� = 6�a conservative choice for the given+ within the EU census scenario, according to
Fig. 4.
A �rst question is how large the typical noise-inducedAvariations are. This is given by the standard deviation
of Aderived from the propagation ofVar¹� º = Var¹) º = + for both noise setups:

sdA ¹+º =
1
)

q
+

�
1 ¸ A2

�
• (3)

8Negative output counts are a typical consequence of standard DP noise. These may be lifted to0, as proposed e.g. by Ghosh et al.
(2012). However, this generally introduces a (normally small) overall bias to the output and may have other negative impacts on output
utility, pointed out by Rinott et al. (2018). In any case, the discussion is not relevant here: all negative counts mentioned in this section
can be replaced by0 without changing any conclusion.

9I.e. in this example, noise on) would be �xed but noise on� and" would be post-processed to minimise the violation of the
3-tuple constraint� ¸ " = ) .

10All following �ndings on Atranscend to any share indicator, and even to more complex ones like the index of dissimilarity, with
the sole complication that other shares, such as minority shares, are typically much less centred around50 %. This is relevant for the
2021 EU census outputs, which will provide migrant background variables by sex at LAU level (table group 8 in footnote 7).
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The left-hand side of Fig. 3 shows this propagation model for sdA as a function of) , with+ = 3•125as introduced
andA= 0•5 �xed. The latter is a reasonable approximation as the factual share of females in the population is
strongly centred around50 %across all LAUs. In the plot, the model is overlaid with mean standard deviations
computed from the noise samples in bins of width 20, showing that it is indeed a very good approximation of
the properties of both noise setups.
Now note the sdA � 1•) dependence for �xed+: while the typical noise variation ofAdrops below1 % point
above) = 200, it is in the10 % points region for) around 20. Since these are absolute percentage points,
this can meanrelative variations of e.g. minority shares (A � 0•5) of sdA•A = 100 % and more for small
populations. Moreover, a sizeable share of LAUs will have anAvariation¡ sdA; somewhat depending on the
exact noise distribution, we �nd here roughly28 % (DP setup) to35 % (CK setup) of LAUs independent of
) . So for instance, about every third LAU with) ' 100 will have an absoluteAdeviation¡ 2 % points (for
+ = 3•125). In fact, these are very generic insights irrespective of any noise: the total variance of any statistic is
generally composed of intrinsic contributions (e.g. measurement or statistical uncertainties) and extrinsic ones
such as noise injection, where the described e�ects scale with the total resulting variance+. The tangible utility
argument to accept noisy protection is that itsaddedvariation is limited or negligible compared to the intrinsic
components.
Now moving to tail e�ects, we start by approximating theAvariation to leading order in the noise terms: using
8= 80 ¸ G8 with 82 f �– ) gand noise termsG8, one �nds

A� A0 = A¹b� � b) º ¸ O
�
b2

�
with b8 � G8•8� 1 – (4)

whereA0 = � 0•) 0. In the CK setup, the maximum absolute variation is bounded byjG8j � � (= 6 here) and thus
from Eq. (4)

maxjA� A0j
�  
'

�
)

¹1 ¸ Aº – (5)

whereas the unbounded noise from the DP setup does not respect such an upper bound. The right-hand side
of Fig. 3 shows the CK limit model of Eq. (5) as a function of) , again for+ = 3•125andA = 0•5. Overlaid
are the largestjA� A0j values found for the DP and CK noise setups in each bin of width 20. This shows �rst
that Eq. (5) indeed describes a tight upper bound on the CK noise variations (the blue bin centres are always
below the grey line); and second, that the largest variations from unbounded noise�for same+�are typically
signi�cantly larger (the black line is always above the blue one, and often above the grey one). These di�erences
can be sizeable (note the log scales): e.g. in the) = »220–240º bin, we �nd maxjA� A0j = 5•3 % points in the
DP noise, but only2•9 % points in the CK noise, with Eq. (5) setting a tight CK limit. 4•1 % points. Again,
these are variations in absolute percentage points, so di�erences in relative variations between bounded and
unbounded noise setups can be huge for small sharesA Ÿ0•1, e.g. minority groups.

3.4 Discussion

The two simple analyses above have shown that the tails of unbounded noise distributions, such as strictlyY-DP
ones, may have grave e�ects at small geographies. For absolute population counts (section 3.2), this starts to
kick in severely around count-levelYtable Ÿ 0•4 (+ ¡ 12•5) for most countries (¡ O¹103º LAUs), whereas e�ects
on population shares (section 3.3) such as minority groups can be sizeable already atYtable = 0•8 (+ = 3•125).
These results point at similar conclusions as in Santos-Lozada et al. (2020): with unbounded noise it is very
di�cult to maintain a certain minimum utility per individual small area unit, foreverysmall area unit in the
output.
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