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Abstract 
This paper introduces two implementations of REaLTabFormer, a GPT-based transformer model designed for generating 
synthetic microdata, both relational and non-relational. We provide a concise overview of the model and evaluate its 
performance using a benchmark dataset provided by the US National Institute of Standards and Technology (NIST). 
Furthermore, we utilize training data from diverse sources to create a synthetic census dataset for an imaginary country. 
This dataset serves to assess the accuracy of probabilistic statistical disclosure risk measures implemented in the sdcMicro 
and μ-Argus software applications. Finally, we propose an alternative approach to measure the risk, which harnesses a 
synthetic superpopulation. 
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represent. The World Bank does not guarantee the accuracy, completeness, or currency of the data included in this work 
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1 Introduction  

Synthetic microdata has the potential to serve as a substitute for collected data that cannot be shared due to 
legal or ethical restrictions (UNECE, 2023). However, the acceptance of synthetic data in the research 
community relies heavily on the ability of data generation models to accurately capture and reproduce the 
statistical characteristics of real data. Striking a balance between achieving a high level of statistical similarity 
and maintaining disclosure risks within acceptable limits remains a formidable challenge, especially for 
relational data. Existing open-source models for generating relational synthetic data primarily rely on 
hierarchical modelling algorithms (Patki et al., 2016), which are based on traditional statistical models and 
Gaussian Copulas. Unfortunately, these models often fail to adequately capture the complex relationships 
within and across tables (Solatorio and Dupriez, 2023). In this paper, we propose the REaLTabFormer model as 
an alternative approach. Section 2 provides a brief introduction to the model. Section 3 presents benchmark 
results using data from the non-relational Diverse Communities Data Excerpts published by the US National 
Institute of Standards and Technology (NIST). In Section 4, we outline the process of creating a comprehensive 
synthetic dataset for an imaginary country, leveraging multiple data sources. We employ this dataset to evaluate 
the probabilistic measure of statistical disclosure risk implemented in sdcMicro and μ-Argus, while also 
proposing an alternative approach for assessing this risk. Finally, in the conclusion, we suggest potential 
avenues for further research. 

2 REaLTabFormer: a brief overview 

REaLTabFormer (Solatorio and Dupriez, 2023) is a generative model designed for producing both relational 
and non-relational tabular data. The model leverages the transformer-decoder architecture of GPT-2, originally 
developed for autoregressive tasks, to generate non-relational tabular data, which we refer to as "parent tables." 
For generating relational data, or "child tables," the model adopts a sequence-to-sequence (Seq2Seq) 
architecture as introduced by Yun et al. (2019). The encoder network incorporates the weights of the network 
trained to generate parent tables as input for producing child tables through the decoder network. To ensure 
data integrity, each column (variable) in the training dataset is independently encoded using a specific token 
vocabulary. This encoding method, inspired by IBM's TabFormer model (Padhi et al., 2020), enables the model 
to assign a zero probability to invalid values for any given column.   
While REaLTabFormer does not provide a guarantee of differential privacy, it incorporates several privacy 
safeguards. Firstly, the model utilizes a target masking procedure as a form of regularization, with the objectice 
of minimizing the likelihood of the generative model "memorizing" and replicating records from the training 
data. This involves introducing missing (masked) values for a certain proportion of the data. The model then 
learns to predict the masks instead of the actual masked values. During the generation of synthetic records, the 
model fills in the masked values with probabilistically determined values, thereby reducing the probability of 
exact record replication from the training data. In our experiments, we employed a mask rate of 10 percent. 
Secondly, the model incorporates an automatic detection and prevention mechanism to address overfitting 
during training. Overfitting, a common challenge in deep learning models, especially when applied to small 
datasets, can result in the generation of observations that closely mimic the training data. To mitigate the issue, 
the model implements an overfitting prevention method based on the analysis of the distribution of the distance 
to closest record (DCR) measure as proposed by Park et al. (2018). For each observation, the DCR is calculated 
as the minimum distance between a synthetic data record and the records in the training data. A quantile 
difference statistic, denoted as Qd, is derived from the distribution of DCR. REaLTabFormer utilizes Qd to 
identify instances where the distance between the synthetic data sample and the training data approaches zero, 
indicating potential overfitting. The model bootstraps over random samples from the training data to establish a 
threshold for Qd, which acts as a signal for overfitting. The measure is regularly estimated during the model 
training process, and training automatically terminates once the threshold is reached. 
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3 Benchmarking REaLTabFormer using NIST data and standardized report 

We compare the performance of REaLTabFormer with the Maximum Spanning Tree (MST) model by 
McKenna, Miklau, and Sheldon (2021). The MST model was the winning entry in the NIST Differential 
Privacy Synthetic Data Competition in 2018. Our comparison involves generating a synthetic or "deidentified" 
version of the national 2019 partition of the Diverse Communities Data Excerpts published by the US National 
Institute of Standards and Technology (NIST) under its Collaborative Research Cycle.1. These data were 
extracted from the American Community Survey conducted by the US Census Bureau. The analysis focuses on 
the ten variables from the Demographic-Focused Subset: SEX (sex), MSP (marital status), RAC1P (race), 
OWN_RNT (own or rent housing), PINCP_DECILE (person’s income discretized as a 10% percentile bin 
relative to the income distribution in their Public Use Microdata Area), EDU (highest educational attainment), 
AGEP (age), HOUSING_TYPE (single housing unit or group quarters), DVET (disability due to military 
service), and DEYE (vision difficulty).  
For the differentially private MST model, we adopt the same settings as the authors, running it with an 
epsilon=10 DP budget and a pre-processor_epsilon=1. We run REaLTabFormer with its default parameters, 
including a masking rate of 10 percent. Both models are instructed to generate a synthetic dataset of the same 
size as the training data. To assess and compare the output of the models, we employ the SDNist Deidentified 
Data Report Generator 2, a tool that provides metrics for evaluating and reporting the utility and privacy of 
synthetic data generators (Task et al., 2023). The quality metrics presented below have been extracted from the 
standardized SDNist reports. In terms of the evaluation metrics, both models achieve a high k-marginal score3, 
with MST holding a slight advantage. However, REaLTabFormer outperforms MST in several other measures, 
including propensity mean square error and the number of inconsistencies (Table 1), propensities distribution, 
structure of principal components, Pearson correlations, and linear regression models. 

Table 1. Summary measures from the SDNist Deidentified Data Report Generator, MST and REaLTabFormer 

  k-marginal 
score 

Propensity 
mean square 

error 

Number of 
inconsistencies 

Unique target data 
records exactly matched 

in deidentified data* 

Number of target data records 
exactly matched in deidentified 

data on quasi-identifiers** 
MST 966 0.010 1017 7.41% 101 (0.37%) 
ReaLTabFormer 957 0.003 18 9.48% 90 (0.33%) 

* Refers to sample uniques (considering all variables) that are present in the synthetic data. 
** RAC1P, OWN_RENT, MSP, SEX, EDU 

Propensities distribution 
High-quality synthetic data should not be easily distinguishable from the training data. The SDNist produces a 
chart (Figure 1) that displays the distribution of data samples over 100 propensity bins to assess how easily it is 
to distinguish training data from synthetic (“deidentified”) data. For synthetic data of high quality, the two lines 
should align. Both models perform well, although with an advantage to REaLTabFormer. 

Pearson correlation coefficient difference 
The Pearson pairwise correlations between variables are calculated for the two synthetic data, and the 
difference with the training data are reported in the charts in Figure 2. A perfect synthetic data would result in 

 
1 The Diverse Communities Data Excerpts consist of a selection of 24 variables drawn from the American Community Survey. They are 
provided for three geographic partitions, including a national partition with 27,253 observations. The data dictionary is available at  
https://github.com/usnistgov/SDNist/tree/main/nist%20diverse%20communities%20data%20excerpts 
2 We used version 2.2 available at https://github.com/usnistgov/SDNist/releases/tag/v2.2.0 
3 “The k-marginal metric checks how far the shape of the deidentified data distribution has shifted away from the target data 
distribution. It does this using many 3-dimensional snapshots of the data, averaging the density differences across all snapshots. It was 
developed by Sergey Pogodin as an efficient scoring mechanism for the NIST Temporal Data Challenges, and can be applied to 
measure the distance between any two data distributions. A score of 0 means two distributions have zero overlap, while a score of 1000 
means the two distributions match identically.” (Extracted from SDNist report) 

https://github.com/usnistgov/SDNist
https://github.com/usnistgov/SDNist/tree/main/nist%20diverse%20communities%20data%20excerpts
https://github.com/usnistgov/SDNist/tree/main/nist%20diverse%20communities%20data%20excerpts
https://github.com/usnistgov/SDNist/releases/tag/v2.2.0
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an all-white chart, as lighter colours indicate that correlations are better preserved.  REaLTabFormer 
outperforms the MST model in this aspect. The same conclusion is reached with the Kendall coefficients, also 
reported by the SDNist report (not shown). 

 
Fig. 1. Distribution of data samples over 100 propensity bins, MST (left) and REaLTabFormer (right) 

 

 
Fig. 2. Pearson Correlation Coefficient Difference, MST (left) and REaLTabFormer (right) 

Principal components 
The quality of the model is also assessed by analysing the contribution of features in each principal component 
(PC). Zooming in on the PC-0 and PC-1 pair panel (Figure 3) and highlighting in red the individuals that satisfy 
a given constraint (in this case MSP = “N” for AGEP < 15, i.e., individuals who are unmarried because they are 
children) provides further evidence of the capability of REaLTabFormer to generate high-utility data. The 
features that contribute to the PC and their contribution ratio are as follows: 

• PC-0: RAC1P (0.16), OWN_RENT (0.07), DEYE (0.04), HOUSING_TYPE (0.03), SEX (0.01) 
• PC-1: HOUSING_TYPE (0.71), MSP (0.23), DEYE (-0.01), EDU (-0.01), DVET (-0.02) 

The highlighted regions in Figure 3 (right) for ReaLTabFormer exhibit greater similarity to the highlighted 
regions in the target data (Figure 3, center). This indicates that the synthetic data generated by ReaLTabFormer 
more effectively preserves the structure and feature correlations of the target data compared to the MST results 
(Figure 3, left). 
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Fig. 3. Principal Component Analysis queries 

Regression models 
To further assess the output of the models, a linear regression model is fit to predict PINCP_DECILE based on 
EDU for the adult population (AGEP > 15). Figure 4 shows the results for the full adult population (left), and 
for the two smallest population groups, respectively the American Indian, Alaskan Native and Native 
Hawaiians (AIANNH) women (middle) and AIANNH men (right).4 

 
Fig. 4. Linear regression models on synthetic data generated by MST (top) and REaLTabFormer (bottom) 

4 Synthetic data for an imaginary country, and disclosure risk assessment 

In this second application of GPT and Seq2Seq-based generative models5, we aim to create a "census dataset" 
comprising 10 million individuals, designed for simulation and training purposes. Our objective is to generate a 
realistic statistical portrayal of an imaginary middle-income country's entire population. The dataset includes 

 
4 The number of observations in the groups, respectively in the target data and in the MST and REaLTabFormer deidentified datasets, 
are 23,006 / 23,010 / 23,333 (All), 376 / 367 / 404 (AIANNH men), 395 / 429 / 433 (AIANNH women). 
5 For this application, we used GPT and Seq2Seq models, which are fundamental components of the REaLTabFormer model. 
REaLTabFormer was created after we produced the synthetic data for the imaginary country, by packaging these components.  
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various household and individual-level variables typically obtained from population censuses and household 
surveys. These variables include demographics, education, labour, housing, household expenditure, assets 
ownership, child anthropometry, and more. The intended applications of this data encompass training in 
sampling techniques. Therefore, the census data must incorporate a realistic enumeration area variable, which 
serves as a primary sample unit in household survey design. Here, we provide an overview of the process, 
while the detailed description can be found in the technical document accompanying the data publication. 
The generation of the full-population dataset followed a 4-step modelling approach.6 Initially, we trained a 
parent model focusing on household composition. Subsequently, a series of seq2seq models were trained to 
capture the hierarchical structure of the data. Specifically, the following seq2seq models were employed: (i) 
mapping household composition to household variables, (ii) utilizing combined household composition and 
household variables as input to generate head of household variables, and (iii) incorporating all previous 
variables to generate the remaining household members' attributes. Additionally, we created the enumeration 
area and geographic variables utilizing data from multiple sources. To complete the dataset, anthropometric and 
consumption variables and a few others were added through cross-dataset imputation. 
We utilized the generative models in conjunction with data from the IPUMS International program to generate 
the core dataset. For training the model, we selected 43 IPUMS census datasets from 30 different countries. 
These datasets provided a total of 236 million observations, from which we randomly extracted a sample of 6.4 
million observations. After the generative models were trained, we generated a raw dataset consisting of 5 
million households, equivalent to approximately 20 million individuals. As none of the selected datasets 
encompassed all the variables of interest, this training dataset contained missing values. However, we 
configured the models to prevent the generation of missing values during the process. After subjecting the raw 
synthetic data to validators, the dataset was reduced to roughly 4.4 million households, corresponding to around 
17.7 million individuals. This reduction implies an efficiency rate of approximately 88% in the generation 
process. From this pool, we extracted the necessary number of observations and allocated them to geographic 
regions based on a target distribution. 
The IPUMS datasets do not provide all variables of interest. To add data on child anthropometrics (height and 
weight of children aged 0 to 5 years), main source of drinking water, type of toilet used by the household, 
ownership of a bicycle and motorcycle, and bank account ownership, we incorporated data from 15 datasets 
published by the Demographic and Health Survey (DHS) program. These selected DHS datasets were recoded 
to ensure a set of consistent overlapping variables that could be utilized as predictors. Subsequently, we 
employed a random forests regression model for the imputation of these variables.  
To incorporate variables related to household expenditures, both total and categorized by product or service, we 
integrated 58 datasets from the World Bank Global Consumption Database (GCD). To ensure consistency, we 
converted the provided values, which were in local currency and for different survey years, into 2020 $ 
purchasing power parities (PPP). For this purpose, we utilized consumption growth data and PPP conversion 
factors from the World Bank's World Development Indicators database. Additionally, we scaled the 
expenditure values proportionally to establish an annual mean per capita expenditure of $3,500 PPP for each 
survey. The resulting data file presents the consumption profiles of 1,207,951 households, displaying a quasi-
lognormal distribution of per capita expenditure. 
The imputation process for the consumption variables was divided into two tasks. Firstly, variables available in 
the GCD datasets were recoded as relevant, ensuring a consistent set of variables shared with the core synthetic 
dataset. Next, using these variables as predictors, we employed a random forest regression model to impute the 

 
6 The full population dataset and data for a sample of 8,000 households are available as open data from the World Bank Microdata 
Library, where a more detailed technical description of the synthetic data generation process is provided. The data and data dictionary 
are available in English (DOIs: https://doi.org/10.48529/78M1-AE09 and https://doi.org/10.48529/MC1F-QH23) and in French (DOIs: 
https://doi.org/10.48529/X5BG-SD13 and https://doi.org/10.48529/42QP-VB86). For information on the process, see also the Github 
repository at https://github.com/avsolatorio/synthetic-pop 

https://doi.org/10.48529/78M1-AE09
https://doi.org/10.48529/MC1F-QH23
https://doi.org/10.48529/X5BG-SD13
https://doi.org/10.48529/42QP-VB86
https://github.com/avsolatorio/synthetic-pop


 
                                                                                               
 

7 
 

total household expenditure for each synthetic household record. Subsequently, a transformer-based model was 
trained to generate the proportions of each consumption category for every household. 
Creating a realistic enumeration area variable proved to be a more complex task. We opted for a hierarchical 
probabilistic generative model, informed by the empirical data at hand, to generate enumeration areas and 
allocate households accordingly. Utilizing variables shared between the IPUMS and DHS datasets, we applied 
K-Means clustering to the enumeration area data from 15 DHS surveys, aiming for high granularity with K=50 
clusters. This analysis effectively captured the clustering effect within enumeration areas, a crucial aspect we 
sought to replicate in the synthetic data.  
In order to inform the probabilistic model on how to distribute households within enumeration areas, we 
analysed the empirical characteristics of DHS enumeration areas. Specifically, we examined the frequency 
distribution of households within these areas, observing a distribution that displayed a truncation effect in the 
higher tail. Of particular interest to us was the distribution of the number of distinct clusters of households 
belonging to the same enumeration area. While not a perfect fit, we found that this distribution could be 
approximated by a Poisson distribution, which we employed in our probabilistic model. Additionally, we 
utilized a negative binomial distribution to model the number of households per enumeration area. 
This same process was applied to both urban and rural areas, albeit with different sets of parameters. For urban 
areas, the mean number of households per enumeration area was set at 500, while for rural areas, a mean of 350 
households was used. In both cases, a standard deviation of 100 was implemented. Furthermore, the clusters 
were parameterized based on their overall similarity, with variations introduced between urban and rural areas. 
It was assumed that urban areas would exhibit greater diversity compared to their rural counterparts. 
Finally, these enumeration areas were employed to distribute households according to geography. To achieve 
the desired population distribution by region and urban/rural classification, we utilized a target table. Iteratively 
sampling from the available enumeration areas, we ensured that the expected population specified in the target 
table was met for each stratum. 
The final dataset is a fully synthetic dataset that does not contain any missing values. It was generated through a 
process that involved sampling, recoding, and integrating training datasets that had previously undergone 
anonymization procedures. Precautions were also taken to prevent overfitting and data copying when applying 
the models. As a result, the synthetic dataset is free from any potential risks associated with identity or attribute 
disclosure. Consequently, it was released as open data. 

Assessment of individual disclosure risk measures, and an alternative approach 
We utilized this synthetic population dataset to evaluate the effectiveness of the statistical disclosure risk 
estimation method employed in sdcMicro and μ-Argus. This method is thoroughly described in the μ-Argus 
manual (Statistics Netherlands, 2014), as well as in Benedetti and Franconi (1998) and Franconi and Polettini 
(2004).  
The individual risk of disclosure refers to the maximum probability that an observation can be correctly re-
identified. The assumption is made that an intruder possesses an error-free dataset encompassing a direct 
identifier of respondents, covering the entire population. The disseminated data, also assumed to be error-free, 
represents a sample from this same population. Both the intruder's dataset and the sample dataset share a 
common set of indirect identifiers or key variables. The combination of these key variables yields a key k for 
each observation, which can be used to match the two data files. The frequency of combination k in the full 
population data is denoted as Fk, whereas the frequency of combination k in the sample data is denoted as fk. If 
Fk is known, the probability of correct re-identification is 1/ Fk. However, in practical scenarios, Fk is unknown 
and must be estimated based on fk, the distribution of key frequencies in the sample. Benedetti and Franconi 
(1998) addressed the uncertainty surrounding Fk using a Bayesian approach and a superpopulation framework. 
The method was tested by Benedetti, Capobianchi and Franconi and (2003) using data from the Italian 
Household Consumption Survey (HCS) in 1997. Additionally, Seri, Di Consiglio, and Franconi (2003) 
conducted simulations with a dataset consisting of 15 million observations extracted from the Italian 1991 
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population census dataset. These assessments concluded that the method provides satisfactory approximations 
of the true risk, albeit with potential over- or under-estimations under varying circumstances. 
The availability of openly accessible synthetic population datasets opens up possibilities for conducting more 
diverse simulations, utilizing a wider range of key variables and samples of varying sizes and designs. In this 
report, we provide a brief assessment of the individual risk measures implemented in µ-Argus and sdcMicro, 
using our synthetic country population dataset. The assessment assumes six key variables: geo1 (geography 
level 1, 10 categories), geo2 (geography level 2, 61 categories), urbrur (urban/rural, 2 categories), sex (2 
categories), age_fix (age in completed years, 101 categories), and marstat (marital status, 4 categories). In total, 
there are 985,760 possible combinations, although many of them are either unrealistic or not present in the 
synthetic dataset. We drew samples of different sizes, ranging from 1,000 to 100,000 (only three samples are 
shown here), and estimated the individual disclosure risks using sdcMicro. We then compared these estimates 
with the true risks, which are known when the full population dataset is available. The sdcMicro approach 
leverages the frequencies found in the sample and the sample weights to estimate the risk. As the proportion of 
existing keys found in a sample increases with the sample size (Figure 5, left), the reliability of the modelled 
risk estimates also increases with the sample's diversity and size (Figure 5, centre and right).  

 
Fig. 5. Impact of sample size and coverage of existing keys on the reliability of the reidentification risk estimates 

In our simulation, we observed that the risk measures tend to be underestimated when the sample size is small. 
However, as the sample size increases, the risk estimates improve and approach the true measure as expected. 
Figure 6 displays the plots for stratified samples of varying sizes (1,000, 5,000, and 25,000 households) out of a 
sample frame containing 2.5 million households. The diagonal line represents a match between the true and 
modelled estimates. Points above the line indicate instances where sdcMicro overestimated the risk, while 
points below the line represent underestimations of the risk. Larger samples offer a better representation of the 
key variables' diversity, leading to the estimates converging towards the diagonal line.  

 
Fig. 6. Actual vs estimated individual risk, stratified samples of 1,000, 5,000 and 10,000 households 

The precise value of the risk estimate for each observation is not the primary concern for organizations that 
release anonymized datasets. What truly matters is whether the risk estimate falls below or above the threshold 
of "acceptable risk." For observations with risk estimates significantly below the threshold, a small error in the 
estimate holds no consequence. The observations that require attention are twofold: those with a 
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reidentification risk above the threshold but not flagged as unsafe, and those without any risk but erroneously 
identified as risky, leading to unnecessary utility loss in the anonymization process. To evaluate this issue, we 
calculate both the true and modelled reidentification risk estimates for each observation in the sample dataset. 
Subsequently, we categorize each observation as "At risk" when the risk value exceeds a predefined threshold 
(e.g., >= 0.01) and as "Not at risk" otherwise, using both the true and modelled risk estimates. This 
classification allows us to generate a confusion matrix for each version of the sample dataset, where false 
positives and false negatives indicate prediction errors. False positives correspond to safe records that are 
mistakenly flagged as at risk, while false negatives represent observations at risk but wrongly reported as safe 
by the modelled estimate. 

 Based on the model-estimated risk 
At risk Not at risk 

Based on the true risk At risk True positive (TP) False negative (FN) 
Not at risk False positive (FP) True negative (TN) 

 
The following summary measures can then be derived from the confusion matrix:7  
- Accuracy: ACC = TP+TN / TP+TN+FN+FP 
- Error rate: ERR = FP+FN / TP+TN+FN+FP 
- False positive rate: FPR = FP / TN+FP 
- Sensitivity, also called recall or true positive rate: SN = TP / TP+FN  
- Precision, also called positive predictive value: PREC = TP / TP+FP 
- Specificity, also referred to as the true negative rate: SP = TN / TN+FP 
 
All indicators in this study have values ranging from 0 to 1, with 1 representing the ideal value for accuracy, 
sensitivity, precision, and specificity. Conversely, for the error rate and false positive rate, the ideal value is 0. 
To assess the level and variation of these measures, we generated 1,000 random samples of 10,000 households 
and produced confusion matrices using sdcMicro to obtain model-based estimates. A risk threshold of 0.01 was 
set, meaning that an observation is considered 'At risk' if it has a 1% or greater chance of being re-identified. 
The first row of Table 2 presents the mean values of the summary measures.  

Table 2. Summary measures (means) of indicators derived from confusion matrices 

Approach Accuracy Error rate False positive rate Sensitivity Precision Specificity 
sdcMicro 0.877 0.123 0.119 0.838 0.451 0.881 
Synthetic  0.965 0.035 0.108 0.973 0.987 0.892 

 
An alternative superpopulation approach 
One weakness of the individual risk measurement approach utilized in sdcMicro and μ-Argus is its inability to 
effectively model a superpopulation that encompasses the diversity of keys when dealing with small sample 
sizes or fractions. To address this limitation, we propose an alternative approach that involves using 
REaLTabFormer to generate a superpopulation that more accurately estimates the true frequencies of the keys, 
leveraging the information available in the sample. We create a synthetic superpopulation consisting solely of 
the key variables, with a number of observations equivalent to the size of the extrapolated sample population. 
This method generates a more diverse superpopulation compared to the Bayesian approach, and the risk 
estimates for “high risk” keys (Fk <= 3) are better captured as evidenced by the relative risk metric (Figure 7). 
Another notable property of the synthetic superpopulation method also shown in the figure is that it captures 
the distribution of the risk better than the Bayesian method used in the sdcMicro. 
We generated confusion matrices for 1,000 random samples of 10,000 households and show the mean values of 
the summary measures in the second row of Table 2. All values obtained using our new approach surpass those 

 
7 See https://classeval.wordpress.com/introduction/basic-evaluation-measures/ 

https://classeval.wordpress.com/introduction/basic-evaluation-measures/
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obtained with the sdcMicro measures.8 More importantly, the sensitivity metric which informs how well risky 
observations are correctly identified has significantly improved using the synthetic superpopulation method. 
We should note, however, that this improvement comes at the expense of substantial computational 
requirements. 

 
Fig. 7. Estimated and actual risk values using the sdcMicro (left) and REaLTabFormer (center) superpopulation models, 
and relative risk trends for both estimation strategies (right). Risk estimates based on six key variables and a sample of 

200,000 households. 

5 Conclusion and further work 

In order for synthetic datasets to gain acceptance as viable substitutes for real microdata, data producers require 
stronger evidence of their safety, while the research community demands further proof of their utility. This 
paper successfully demonstrates the capability of the REaLTabFormer model in generating synthetic non-
relational and relational data that is both safe and realistic. It also showcases the model's ability to produce 
improved estimates of individual statistical disclosure risk in microdata. 
Moving forward, additional research and development efforts should be pursued in several areas. Firstly, the 
evaluation of statistical disclosure risk measures and disclosure limitation methods can be expanded to include 
evaluating the mosaic effect, analysing the effectiveness of reverse-engineering of anonymization procedures, 
examining the influence of sample design on disclosure risk, and exploring the impact of data inaccuracies on 
risk assessments (considering scenarios beyond worst-case assumptions). The existence of openly accessible 
synthetic datasets presents valuable opportunities to conduct simulations that can significantly contribute to 
advancing this research. 
Secondly, it is worth considering the incorporation of differentially private mechanisms into transformer-based 
models. This would provide a more robust and formally guaranteed approach to ensuring the safety and 
integrity of the synthetic data. 
Thirdly, there is a need for a comprehensive evaluation and enhancement of REaLTabFormer and other 
synthetic data production models. Our primary focus will be to leverage REaLTabFormer to generate sample 
datasets with high utility, utilizing actual country survey datasets as input. This process will combine 
techniques of synthetic data modelling and sample calibration. The entire process will be meticulously 
documented and made replicable, to serve as a potential model for organizations interested in generating 
synthetic data for the purpose of creating public-use microdata files.  
  

 
8 The key variables and base population used here are the same, but the 1,000 samples are drawn independently. The summary 
indicators based on 1,000 draws are however expected to provide central measures that can be compared. 
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