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Abstract 

Interest in synthetic data techniques, including for official statistics, has been rising in recent years. This is in large part 

because synthetic data is very strong in preventing the identification of specific individuals. At the same time, it is known 

that synthetic data can contain probabilistic information about characteristics of individuals in the real data (sometimes 

known as attribute information). If non-statisticians want to make well-considered decisions on the privacy impact of a 

synthetic dataset, it is essential that they have interpretable estimates of the privacy impact for attribute information 

specifically. Many organizations already publish aggregated datasets, where attribute information is also relevant. In this 

paper, we propose the Aggregation Equivalence Level (AEL), which puts the attribute information of synthetic data in the 

context of attribute information of aggregated data, as measured using the Differential Correct Attribution Probability 

(DCAP). We also provide a management summary to communicate the key message of this paper to privacy officers, 

lawyers and managers.  
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1. Introduction  

Synthetic data has risen in prominence as one possible way to make the trade-off between data privacy and data 

dissemination less strict (Emam et al., 2020). Synthetic tabular datasets are created by fitting an algorithm on a 

real tabular dataset. This allows one to – ideally – generate a synthetic dataset that is similar enough on the 

structural level to the real dataset to be fit for information purposes, yet dissimilar enough on the individual 

level to not contain confidential personal information. For an introduction into the synthetic data literature, we 

refer to El Emam (2020), Drechsler and Haensch (2023) and Jordon et al. (2022). In the private sector, the 

number of companies offering synthetic data services globally has grown from 13 in January 2017 to 58 in 

October 2021 and 99 in February 2023 (Devaux, 2021, 2023). On the public side, synthetic data has also 

garnered interest for official statistics. For example, the United Nations Economics commission for Europe 

(UNECE) published a starter guide “Synthetic Data for Official Statistics” (UNECE, 2022).  

The statistical disclosure literature distinguishes between different types of information disclosure. Two of the 

most important types are re-identification and attribute information (Elliot, 2014; Emam et al., 2020; Taub et 

al., 2018). Disclosure through re-identification refers to the situation where available information about an 

individual can lead to identification of this individual in the dataset. Attribute disclosure refers to disclosure of 

some characteristics of a group in the data (sometimes combined with re-identification), with varying levels of 

certainty (see e.g., Emam et al., 2020; Taub et al., 2018). For example, if a dataset shows that all females 

between 40-50 years in geographical region X have breast cancer, and you know a female between 40 and 50 in 

region X, then you know that she has breast cancer. Another example: if a dataset shows that 90% of the girls at 

school Y have failed their school exams, and you know a girl at school Y, then you know there is a high 

probability that she has failed her exam. 

In the statistical disclosure literature, terms such as ‘attribute information’, ‘attribute disclosure’ and ‘group 

information’ are used with varying exact definitions. In this paper, we use ‘attribute information’ as a catch-all 

term to describe all situations where datasets can disclose (probabilistic) information about characteristics of 

individuals in reality.  

The value of synthetic data relies on the assumption that any given synthetic dataset contains so little personal 

information that it is not problematic to share (Emam et al., 2020). This is assumption is often take for granted, 

in large part because re-identification risk is “no longer meaningful” (Taub et al., 2018, p. 122) for any fully 

synthetic dataset, “because it breaks the link between the data subjects and the data” (Taub et al., 2018, p. 122). 

This leaves attribute information as the type of disclosure most relevant for synthetic data.1 After all, synthetic 

data can contain probabilistic information about characteristics of real individuals just as much as real data can. 

To quantify the amount of attribute information in synthetic data, Taub et al. (2018) proposed the Differential 

Correct Attribution Probability (DCAP), based on the work of Elliot (2014). The DCAP is discussed in more 

detail in Section 2 of this paper. Conceptually, this metric quantifies the amount of new information that can be 

obtained from a synthetic dataset relative to a the univariate baseline. Using the DCAP, one is able to quantify 

attribute information for synthetic data. However, this metric is always relative to the specific dataset and 

context. Consequently, the interpretation of the DCAP is difficult, which makes it very complex for lawyers, 

privacy officers and managers to weigh the privacy implications of any synthetic dataset using the DCAP.  

Therefore, the goal of our study is to provide non-statisticians with guidance to make well-considered decisions 

on attribute information of a synthetic dataset. We build on the work of Taub et al. (2018), and propose the 

Aggregation Equivalence Level (AEL). The AEL puts attribute information of synthetic data in the context of 

attribute information of (censored) aggregated data, as measured by the Differential Correct Attribution 

Probability (DCAP). Many organizations, especially government organizations, already release aggregated 

datasets, where attribute information is also relevant. Lawyers, privacy officers and managers are already used 

to making decisions about privacy implications of aggregated datasets, and often have policy on how to deal 

 

1 If attribute information with 100% certainty is regarded as its own form of information disclosure, as in e.g. (Emam et al., 
2020), it can be argued that this doesn’t apply to synthetic data either. However, it should be noted that this depends on the 

specifics of the synthesis technique. 
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with this in different contexts and for different types of data. Expressing attribute information of synthetic data 

in the context of attribute information of aggregated data concretizes attribute information, helps to interpret 

attribute information of synthetic data, and supports privacy officers, lawyers and managers with decisions on 

privacy implications of synthetic data.   

By proposing the Aggregation Equivalence Level (AEL), we also build on the work of Little et al. (2022). They 

compared the utility and disclosure risk of synthetic data and samples of microdata, to increase the 

understanding of disclosure risk of synthetic data. This is especially helpful for organizations that are used to 

release randomly selected samples of the original data as a Statistical Disclosure Control technique. In this 

paper, we show how to use the AEL, and how it increases the interpretability of attribute information of a 

synthetic dataset by putting it in the context of attribute information of aggregated datasets. This is especially 

useful for organizations that are used to publish aggregated datasets. 

The remainder of this paper is organised as follows: in Section 2, we discuss the CAP and DCAP. In Section 3, 

we propose the Aggregation Equivalence Level, which puts attribute information of synthetic data in the 

context of attribute information of aggregated data. In Section 4, we discuss an empirical example to illustrate 

the use of the proposed AEL and show how this increases the interpretability of attribute information of a 

synthetic dataset. We end with a conclusion and discussion in Section 5. On the Open Science Framework 

(OSF, https://osf.io/rdpab/) we provide annotated R-code to reproduce our example, as well as a management 

summary (in English and Dutch) to communicate the key message of this paper to non-statisticians. 

 

2. Differential Correct Attribution Probability (DCAP)   

The Correct Attribution Probability (CAP) was first proposed by Elliot (2014) and further developed by Taub 

et al. (2018), specifically to measure attribute information for synthetic datasets. Conceptually, the CAP 

measures the probability that an intruder guesses an attribute about any specific person right. This specific 

attribute is called the target variable or target attribute. For example, imagine an intruder is attempting to guess 

whether a specific student passed or failed their final high school exam and assume that the total pass rate of 

84% is published. With no other information, the most reasonable approach for the intruder is to hedge their 

bets using the total pass rate. In other words, for every student they guess that that student passed with a 

probability of 84% and failed with a probability of 16%. In that case the CAP equals 84%  for the students 

who passed and 16% for the students who failed. To calculate the CAP for the entire dataset, we simply take 

the average over all students. It is easy to see that in this case 𝐶𝐴𝑃 = 0.84 ∙ 0.84 +  0.16 ∙ 0.16 = 0.73. We 

call the CAP calculated using just the univariate distribution of a variable the baseline CAP for that variable.2 

Note that the Correct Attribution Probability is a probabilistic concept. That is, the attacker does not make a 

single guess, but rather a probabilistic one. This can also be seen as expressing a measure of belief or certainty. 

Also note that more diversity in the target variable leads to a lower baseline CAP.  If the pass rate was  50%, 

we would get a CAP of 0.5 ∙ 0.5 +  0.5 ∙ 0.5 =  0.5, instead of 0.73. This makes sense conceptually, as it is 

easier to guess an attribute when it has a monotone distribution. One consequence of this is that the CAP for a 

target variable based on a (synthetic) dataset is not interpretable if you do not know what the corresponding 

baseline CAP is. A CAP of 0.74 would represent a small increase of 0.01 with a total pass rate of 84% but a 

rather large increase of 0.24 with a total pass rate of 50%.  

 

 

2 A variant metric for continuous variables has been proposed (Elliot, 2014), but is outside the scope of this paper. 

https://osf.io/rdpab/
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Table 1: Example of the DCAP calculations for a aggregated, non-censored dataset. 

 

The Differential Correct Attribute Probability (DCAP) accounts for this. The DCAP is defined as the CAP for 

a target variable based on a dataset, minus the baseline CAP. Take, for example, the situation where we also 

know the amount of students who passed and failed on every school, as in the example in table 1. In that case 

an attacker is able to tailor their guesses based on the school a student attends (the table-based guesses). We call 

this taking the school as a key value for the DCAP. In table 1, the correct attribution probability rises to 0.81 

with this new information and the DCAP equals 0.81 −  0.73 = 0.08. Note that for some students (those 

attending School A and School D) the attacker can know whether they passed or failed with 100% certainty. 

The DCAP does not treat this situation as special, so other checks are necessary in situations where this is a 

specific concern.3 

 

One disadvantage of the DCAP is the range of values it can take in practice. Intuitively, one might expect the 

minimal possible value of the DCAP to be 0 and the maximal possible value to be the value when the full 

dataset is known (0.08 in this case). Yet, this is not what happens in reality.  For example, consider the case 

where the total pass rate is 84% but an attacker mistakenly beliefs is to be 100%. Their Correct Attribute 

Probability would be 0.84 ∙ 1 +  0.16 ∙ 0 = 0.84 and the DCAP would be 0.84 −  0.73 =  0.11. This is a 

higher DCAP than if they would have the full dataset, despite the attacker having incorrect information. This 

usually seems to arise when the attackers guesses do not conform to the univariate distribution of the target 

variable. Negative DCAP values arise in similar cases, and are also possible when a synthetic dataset has 

especially low utility (Taub et al., 2018, p. 126). 

 

 
Table 2: Example of the DCAP calculations for a aggregated dataset censored at n<7. Bolded cells indicate differences from table 1. 

 

The Differential Correct Attributed Probability (DCAP) really shines when the attacker has some but not all 

information, such as when there is a censored or synthetic dataset available. Take for example table 2, which 

depicts the same dataset, but has schools with less than 7 students censored. An attacker would not be able to 

distinguish between school A and school D here and is forced to group them together. In particular, their guess 

is based on the total passed and failed students among all schools with censored totals. These are 21 −  6 −

 9 = 6 and 4 −  2 −  1 =  1 respectively, so they will guess a student on any school with a censored total 

passed with a 86% chance and failed with a 14% chance. In this example, the CAP is 0.74 and the 

 

3 As mentioned earlier, this is unlikely to happen for synthetic datasets. 
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corresponding DCAP is just 0.01, which is significantly less than when the attacker has the full dataset. Note 

that this definition assumes the attacker knows the exact total amounts of passed and failed students in the real 

dataset. This is a slightly stricter assumption than normally for the DCAP, where the assumption is just that the 

attacker knows the percentages of the univariate distribution. 

 

 
Table 3: Example of the DCAP calculations for a synthetic dataset, based on the real dataset in table 1. Bolded cells indicate differences from table 1. 

 

Finally, the Differential Correct Attribute Probability for a synthetic dataset is computed very similarly. Here, 

the distributions for every school in the synthetic data are used by the attacker in calculating their guesses. Note 

that the underlying reality does not change. In the example in table 3, this happens to lead to significantly worse 

guesses for students in Schools A and B, but better in Schools C and D. In total, this dataset has a CAP of 0.80 

and a corresponding DCAP of 0.06. This means it contains significantly more attribute information than the 

aggregated dataset censored at k<7, but less than the full aggregated dataset.  

 

3. Aggregation Equivalence Level (AEL) 

The concept of the Aggregation Equivalence Level (AEL) is to find the level k where the aggregated dataset 

contains the same amount of attribute information as the synthetic dataset, or slightly more than that.  

In Box 1, the steps of calculating the Aggregation Equivalence Level are presented. First, create a synthetic 

data set. 

Secondly, create multiple aggregated datasets with varying levels of aggregation. Use aggregation levels that 

cover a range of possible values. For example, start with 𝑘 =  {1,2, . . . ,20}. A level of k = 5 here means that all 

cells where less than 5 people are included are suppressed by the text “n < 5”.  

Then, compute the average DCAP for each aggregated dataset and the synthetic dataset. In the fourth and final 

step, the DCAPs are compared. Choose the level k that has the same DCAP as the DCAP for the synthetic 

dataset, or – if the levels are not exactly the same - choose the level k such that the DCAP for the synthetic 

datasets is between the DCAPs aggregated at level k and level k+1, to be more conservative. This level k is the 

Aggregation Equivalence of the synthetic data set. 

Box 1: Steps to compute the AEL 

1. Create a synthetic data set of the observed data. 

2. Create multiple aggregated datasets with varying levels of censoring. k, e.g. 𝑘 =
 {1,2, . . . ,20}. 

3. Compute the average DCAP for each aggregated dataset and the synthetic dataset.  

4. Compare the DCAPs and choose the level k such that the DCAP for the synthetic dataset 

is between the DCAPs for datasets aggregated at level k and level k+1. 
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4. Empirical Example: School Exam Results in the Netherlands  

We will illustrate the use of the Aggregation Equivalence Level (AEL) by discussing an empirical example. We 

use freely available online open data from DUO.4 The data and our example code can be found at the OSF via 

https://osf.io/rdpab/. The data contains information about all secondary schools in the Netherlands, the number 

of examination candidates at that school and the number of students that passed the exam. It is further split out 

among some other categories: the student’s gender (male or female), the level of examinations that they are 

taking and their specialisation profile (e.g. “culture and society” or “maritime and technology”). There are also 

some variables that are higher level, such as the educational region.  

We selected data from the school year 2021-2022, which totals 184.077 students on 1.156 schools. We included 

7 variables: one indicating whether the student passed or failed, two with information about the examination 

level, two with information about the student’s specialisation, one with a code corresponding to the school and 

one with the school region. We used the exam result as the target variable and the other six variables as keys.  

 

Table 4: Part of the DCAP calculation for the aggregated, non-censored dataset of Dutch school exams. The 6 variables used have been condensed into 

3 for readability. 

 

We follow the steps to compute the Aggregation Equivalence Level as presented in Box 1.  

- Step 1: To create the synthetic dataset, we have used the package synthpop (Nowok et al., 2016, 

version 1.7-0) in R. The data was synthetized using Classification and Regression Trees (CART) 

(Reiter, 2005). We stratified the synthesis on the school region and used default settings otherwise. 

 

- Step 2: We created 20 censored aggregated datasets based on the open data. The aggregation levels 

used are 𝑘 ∈  {1, 2, . . . , 20}. Code to replicate this, and all other output of this paper can be found on 

the OSF via https://osf.io/rdpab/. We used R with the tidyverse packages (Wickham et al., 2019).  

 

- Step 3: We computed the DCAP for the 20 aggregated data sets and the synthetic data set. The code to 

compute the DCAP in R is partly based on the DCAP code in Python of Taub et al. (2018). 

 

- Step 4: To compare the DCAPs, we present the results in a plot. Figure 1  shows the DCAP for the 

various aggregation levels k, and a constant line representing the DCAP of the synthetic dataset. It can 

be seen that the average DCAP of the synthetic dataset is 0.0081. The average DCAPs of the 

aggregated datasets vary between 0.0048, when the dataset is aggregated at k = 20 and 0.0117, when 

the dataset is "aggregated’ at k = 1 (i.e. not aggregated at all). We see that the DCAP is not exactly 

equal to an aggregated DCAP value, it is between the DCAPs for aggregated datasets censored at k = 9 

and k = 10.  Therefore, we choose the highest level k where DCAP value is higher than the synthetic 

DCAP. In our example, this would be aggregation level k = 9. This means that the synthetic dataset 

contains the same amount of or less information in terms of attribute information, as the aggregated 

dataset where the aggregated data is censored at n < 9 (i.e., k = 9). 

 

 

4 Data downloaded from https://duo.nl/open_onderwijsdata/voortgezet-onderwijs/aantal-

leerlingen/examens.jsp#examenkandidaten-en-geslaagden 

https://osf.io/rdpab/
https://osf.io/rdpab/
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Figure 1: Picking the Aggregation Equivalence Level (AEL) by comparing the DCAPs of a synthetic dataset with aggregated datasets censored at 

different levels. 

 

 

5. Discussion 

In this paper, we propose the Aggregation Equivalence Level (AEL) to put attribute information of synthetic 

data in the context of attribute information of aggregated data. We discuss an empirical example and show how 

to use the AEL in practice.  

We believe that the AEL is a promising metric to make decisions about privacy implications of synthetic data 

easier. However, there are also some limitations that need to be further investigated. First, we considered 

comparing the targeted CAP (TCAP) (Taub et al., 2018) alongside the DCAP. This metric quantifies the 

increased risk of attribute information relative to the baseline specifically for individuals unique in the synthetic 

data. We consider the TCAP a valuable metric for synthetic data and feel that is would be helpful to put this 

metric in context of aggregated data as well. However, the TCAP cannot be meaningfully computed for 

aggregated datasets, as single cases are by definition suppressed in the aggregated data. Secondly, as mentioned 

in Section 2, it is possible that the DCAP has a minimum value lower than the baseline CAP, and a maximum 

value higher than the full observed data. This can complicate the interpretation.   

Directions for future research involve investigating the behaviour of the DCAP to find out under which 

circumstances it performs well or poorly. Also, we want to carry out a simulation study to investigate the 

impact on the AEL of varying the key variables in the DCAPs, as well as the sample size, and the number of 

categories within the target variable.   
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Note that when a synthetic and an aggregated data set are both published online, information from both datasets 

could be combined. This would logically lead to a higher amount of attribute information than the attribute 

information to be gained from either the aggregated or the synthetic dataset. This also applies for all other 

relevant data available online. When other data can be linked to published synthetic or aggregated data, the 

amount of attribute information available will increase. 

Another point we would like to stress is the importance of clear communication about attribute information to 

non-statisticians, especially when the interpretation of privacy risk is not clear-cut. We provide a management 

summary (in English and Dutch) at the OSF (https://osf.io/rdpab), to communicate the main message of this 

paper to privacy officers, lawyers and managers. We advise against making statements about certain AEL 

values which are always “safe” or “unsafe”, just as it is not recommended that certain aggregation levels are 

always considered “safe” or “unsafe”. We recommended researchers, privacy officers, lawyers and managers, 

to think about the specific synthetic data set, what kind of information could be disclosed and how sensitive this 

information is. The desired aggregation level will also vary depending on the context of the data. One can 

imagine that a synthetic dataset containing information on the number of students that follow a certain 

specialization within a school contains less confidential information than a dataset about criminal records. The 

acceptable amount of attribute information of a synthetic dataset is a consideration that should be made in light 

of the context of the specific dataset. 

It is our hope that putting attribute information of synthetic data in the context of aggregated data helps to 

concretise attribute information, eases the interpretation of attribute information of synthetic data and makes 

decisions about privacy implications of synthetic data easier. We hope that this study is a starting point for 

future research to further investigate the behaviour of the DCAP and the use of the Aggregation Equivalence 

Level.   

  

https://osf.io/rdpab
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