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Abstract
Synthetic data can be a solution to reduce disclosure risks that arise when disseminating research data to the public.
However, for the synthetic data to be useful for general inferential purposes, it is paramount that its distribution is similar
to the distribution of the observed data. Often, data disseminators consider multiple synthetic data models and make
refinements in an iterative fashion. After each adjustment, it is crucial to evaluate whether the quality of the synthetic data
has actually improved. Although many methods exist to provide such an evaluation, their results are often incomplete or
even misleading. To improve the evaluation strategy for synthetic data, and thereby the quality of synthetic data itself, we
propose to use the density ratio estimation framework. Using techniques from this field, we show how an interpretable
utility measure can be obtained from the ratio of the observed and synthetic data densities. We show how the density ratio
estimation framework bridges the gap between fit-for-purpose and global utility measures, and discuss how it can also be
used to evaluate analysis-specific utility. Using empirical examples, we show that density ratio estimation improves on
existing (global) utility measures by providing higher statistical power and offering a fine-grained view of discrepancies
between the observed and synthetic data. Moreover, we describe several additional advantages of the approach, such as
providing a measure of utility on the level of individual synthetic data points, automatic model selection without requiring
user specification, and readily available high-dimensional extensions. We conclude that density ratio estimation provides a
promising framework in synthetic data generation workflows and present an R-package with functionality to implement the
approach.
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Introduction

In recent years, the academic interest in synthetic data has exploded. Synthetic data are increasingly being used as a
solution to overcome privacy and confidentiality issues that are inherently linked to the dissemination of research data.
National statistical institutes and other government agencies have started to disseminate synthetic data to the public while
restricting access to the original data to protect sensitive information (e.g., Abowd, Stinson, and Benedetto 2006; Hawala
2008; Drechsler 2012). At the same time, researchers began to share synthetic versions of their research data to comply
with open science standards (e.g., van de Wiel et al. 2023; Obermeyer et al. 2019; Zettler et al. 2021). Rather than sharing
the original research data, a synthetic surrogate is shared to facilitate reviewing of the data processing and analysis pipeline.
Additionally, synthetic data is increasingly being used for training machine learning models (Nikolenko 2021). On a lower
level, synthetic data can be used in model testing pipelines (before access to the real data is provided), for data exploration,
and for educational purposes.

At its core, the idea of synthetic data is to replace values from the observed data with new values that are generated from a
model. In this way, it is possible to generate an entirely new synthetic data set (commonly referred to as the fully synthetic
data approach; Rubin 1993), but also to replace just those values that are sensitive or that would yield a high risk of
disclosure when released (an approach called partially synthetic data; Little 1993). Both approaches attempt to build a
model that incorporates as much of the information in the real data as possible, given a pre-specified privacy risk level that
is still deemed acceptable. The models used to generate synthetic data were originally closely related to methods used for
multiple imputation of missing data, such as fully conditional specification (Volker and Vink 2021) or sequential regression
(Nowok, Raab, and Dibben 2016). Recently, significant improvements in generative modelling sparked the scientific
interest in synthetic data in the computer science community, leading to novel synthesis methods (e.g., Patki, Wedge, and
Veeramachaneni 2016; Xu et al. 2019). Combined with work on formal privacy guarantees, this resulted in new models
that explicitly control the level of privacy risk in synthesis methods (Jordon, Yoon, and Schaar 2019; Torkzadehmahani,
Kairouz, and Paten 2019). Through both methodological advances and practical implementations, data synthesis has
evolved into an increasingly popular approach to enhance data dissemination.

Regardless of these developments, the main challenge when generating synthetic data remains to adequately balance the
privacy risk with the utility (i.e., quality) of the synthetic data. On the upper limit of this privacy-utility trade-off, the
synthesis model captures the information in the observed data so precisely that the real data is exactly reproduced, resulting
in the same privacy loss as when disseminating the real data. In statistical terms, the synthesis model is overparameterized
to such an extent that there are no degrees of freedom left, and there is thus no randomness involved in the generation of the
synthetic values. On the lower limit of the trade-off, synthetic values are generated without borrowing any information from
the real data. For example, we could place the value 0 or a random draw from a standard normal distribution for every
record and every variable, such that the synthetic data contains only noise. Synthetic data sets sit somewhere between
these extremes: they contain some information from the real data, yielding some disclosure risk, but they also resemble
the real data to some extent, yielding more than zero utility. Because not all information is captured, the utility of the
synthetic data will always be lower than the utility of the real data. The question that naturally arises is where on the
privacy-utility continuum the synthetic data is located: how much information is sacrificed, and which aspects of the real
data are reproduced in the synthetic data. From the perspective of the data provider, it is important to know how informative
the released data is, while the user wants to know whether their analysis can be reliably performed. Additionally, the data
provider can use knowledge about the utility to finetune the synthesis model and improve the synthetic data quality.

To evaluate the utility of synthetic data, three classes of utility measures have been distinguished (for a thorough review of
these measures, see Drechsler and Haensch 2023): fit-for-purpose measures, global utility measures, and analysis-specific
utility measures. Fit-for-purpose measures are often the first step in assessing the quality of the synthetic data. They typically
involve comparing the univariate distributions of the observed and synthetic data (for example using visualization techniques
or goodness-of-fit measures). Although these measures provide an initial impression of the quality of the synthesis models
used, this picture is by definition limited, because only one or two variables are assessed at the same time. Hence, complex
relationships between variables will always be out of scope. Global utility measures build on the fit-for-purpose measures,
but attempt to capture the quality of the entire multivariate distribution of the synthetic data relative to the observed data in
a single, global, indicator. This can be done using some distance measure (e.g., the Kullback-Leibler divergence; see Karr
et al. 2006), but also by estimating how well a prediction model can distinguish between the observed and synthetic data,
using the predicted probabilities (propensity scores; Rosenbaum and Rubin 1983) as a measure of discrepancy (e.g., the
propensity score mean squared error, 𝑝𝑀𝑆𝐸 ; Woo et al. 2009; Snoke et al. 2018). While global utility measures paint a
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rather complete picture, and provide information over the entire range of the data, they tend to be too general. That is,
global utility measures can be so broad that important discrepancies between the real and synthetic are missed, and a
synthetic data set with high global utility might still yield analyses with results that are far from the results from real data
analyses (see Drechsler 2022). Lastly, the analysis-specific utility measures quantify to what extent analyses performed
on the synthetic data align with the same analyses on the observed data. These measures can, for example, evaluate how
similar the coefficients of a regression model are (e.g., using the confidence interval overlap; Karr et al. 2006), or whether
prediction models trained on the synthetic and observed data perform comparably in terms of evaluation metrics. However,
analysis-specific utility generally does not carry over: high specific utility for one analysis does not at all imply high utility
for another analysis. Since data providers typically do not know which analyses will be performed with the synthetic data, it
is impossible to provide analysis-specific utility measures for all potentially relevant analyses (see also Drechsler 2022).

In this paper, we propose to use the framework of density ratio estimation (Sugiyama, Suzuki, and Kanamori 2012a) to
place all above measures under a common umbrella. We show empirically that this approach performs at least as well as
various existing utility measures, while providing a more fine-grained view of the misfit of the synthetic data. Moreover, the
typically non-parametric nature of density ratio estimation in combination with automatic model selection mitigates the
burden around model specification of existing utility measures as the 𝑝𝑀𝑆𝐸 . In short, density ratio estimation compares
the (multivariate) distributions of two data sets (e.g., two different samples or groups) by directly estimating the ratio
of their densities. Crucially, this method does not estimate the densities of the observed and synthetic data separately,
subsequently taking their ratio, but estimates the density ratio directly, which has been shown to yield better performance
(e.g., Kanamori, Hido, and Sugiyama 2009). The idea is that if two data sets are drawn from the same data-generating
mechanism, the sampled data should be similar, and the ratio of their densities should be close to one over the entire
multivariate space. This approach readily extends from univariate to bivariate and multivariate densities, and thus bridges
the gap between fit-for-purpose and global utility measures. Moreover, we briefly discuss how density ratio estimation can
be used to compare the distributions of parameters of observed and synthetic data, to incorporate analysis-specific utility
measures as well. Hence, we show that it is a versatile approach that is useful in the entire domain of data utility.

Also from the privacy-side several promising advances have been made to quantify the amount of information leakage
through the synthetic data. Important work has been done to build formal privacy guarantees into the synthesis models
through differential privacy (Dwork 2006). In addition to these privacy-by-design mechanisms, some measures exist to
quantify privacy loss of synthetic data after generation (e.g., McClure and Reiter 2016; Reiter and Mitra 2009; Hu 2019).
However, the practical applicability of these measures depends on whether the data is fully or partially synthetic, and
especially in case of the former, the practical applicability of these measures is often limited (for an extensive discussion of
these issues, see Drechsler and Haensch 2023). More research on measures to evaluate disclosure risks in synthetic data is
thus certainly needed, but in this paper we focus exclusively on measuring utility.

In what follows, we describe the density ratio estimation framework by summarizing some of the work in this area, and
show how it provides a useful framework for measuring utility of synthetic data. Subsequently, we illustrate how the
method can be used in practice by providing multiple examples, and empirically compare its performance to existing utility
measures. Lastly, we discuss how density ratio estimation relates to existing utility measures, describe current shortcomings
of the approach and relate these shortcomings to avenues for future work.

Density ratio estimation

The density ratio estimation framework was originally developed in the machine learning community for the comparison of
two probability distributions (for an overview, see Sugiyama, Suzuki, and Kanamori 2012a). The framework has been shown
to be applicable to prediction (Sugiyama et al. 2010; Sugiyama 2010), outlier detection (Hido et al. 2008), change-point
detection in time-series (Liu et al. 2013), importance weighting under domain adaptation (i.e., sample selection bias;
Kanamori, Hido, and Sugiyama 2009), and, importantly, two-sample homogeneity tests (Sugiyama, Suzuki, et al. 2011).
The general idea of density ratio estimation is depicted in Figure 1, and boils down to comparing two distributions by
modelling the density ratio 𝑟 (𝒙) between the probability distributions of the numerator samples, taken from the synthetic
data distribution, 𝑝𝑠𝑦𝑛 (𝒙), and the denominator samples, taken from the observed data distribution, 𝑝𝑜𝑏𝑠 (𝒙), such that

𝑟 (𝒙) =
𝑝𝑠𝑦𝑛 (𝒙)
𝑝𝑜𝑏𝑠 (𝒙)

. (1)
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Figure 1. Example of the density ratio of two normal distributions with different means and variances
(i.e., 𝑁 (0, 1) and 𝑁 (1, 2)). Note that the density ratio is itself not a proper density.

This specification has the intuitive interpretation that if the density ratio is large, too many synthetic values will be generated
in that region, whereas if the density ratio is small, there will be too few synthetic observations, both relative to the
observed data. An intuitive approach to estimating 𝑟 (𝒙) from samples of 𝑝𝑜𝑏𝑠 (𝒙) and 𝑝𝑠𝑦𝑛 (𝒙) would be to estimate the
observed and synthetic data density separately, for example using kernel density estimation (Scott 1992), and subsequently
compute the ratio of these estimated densities. However, density estimation is one of the hardest tasks in statistical learning,
unavoidably leading to estimation errors for both densities. When subsequently taking the ratio of the estimated densities,
the estimation errors might be magnified, resulting in a poorer estimate of the density ratio than necessary as compared
to direct estimation. An alternative is to specify and estimate a model directly for the ratio without first estimating the
separate densities. Extensive simulations on a wide variety of tasks showed that this approach typically outperforms density
ratio estimation through naive kernel density estimation, especially when the dimensionality of the data increases (e.g.,
Kanamori, Suzuki, and Sugiyama 2012; Hido et al. 2008; Kanamori, Hido, and Sugiyama 2009).

Over the past years, several methods for direct density ratio estimation have been developed. Typically, these methods aim
to minimize some discrepancy 𝒟(𝑟 (𝒙), 𝑟 (𝒙)) between the true density ratio and some density ratio model. One commonly
used discrepancy measure is the following squared error

S0 (𝑟 (𝒙), 𝑟 (𝒙)) =
1
2

∫
(𝑟 (𝒙) − 𝑟 (𝒙))2𝑝𝑜𝑏𝑠 (𝒙)𝑑𝒙, (2)

which can be considered as the expected discrepancy between the two functions over the density of the observed data. One
could also use other discrepancy measures, such as the binary or unnormalized Kullback-Leibler divergence or Basu’s
power divergence (which are all members of the family of Bregman divergences; for a detailed discussion, see Sugiyama,
Suzuki, and Kanamori 2012b). It is convenient to model the density ratio with a linear model, such that

𝑟 (𝒙) = 𝝋(𝒙)𝜽 , (3)

where 𝝋(𝒙) is a non-negative basis function vector that transforms the data from a 𝑝-dimensional to a 𝑏-dimensional space,
and 𝜽 is a 𝑏-dimensional parameter vector. Although the model is linear in its parameters, the density ratio itself is a
non-linear function of the data if 𝝋(𝒙) is a non-linear transformation of the data, which it typically is.

To illustrate the idea of density ratio estimation, we briefly review one method from the field: unconstrained least squares
importance fitting (Kanamori, Hido, and Sugiyama 2009), which will also be used in our illustrations in the upcoming
section. The authors show that the squared error can be rewritten as

S0 (𝑟 (𝒙), 𝑟 (𝒙)) =
1
2

∫
𝑟 (𝒙)2𝑝𝑜𝑏𝑠 (𝒙)𝑑𝒙 −

∫
𝑟 (𝒙)𝑟 (𝒙)𝑝𝑜𝑏𝑠 (𝒙)𝑑𝒙 + 1

2

∫
𝑟 (𝒙)2𝑝𝑜𝑏𝑠 (𝒙)𝑑𝒙

=
1
2

∫
𝑟 (𝒙)2𝑝𝑜𝑏𝑠 (𝒙)𝑑𝒙 −

∫
𝑟 (𝒙)𝑝𝑠𝑦𝑛 (𝒙)𝑑𝒙 + 𝐶,

(4)
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where 𝑟 (𝒙) in the second term on the first line is rewritten in terms of the ratio of 𝑝𝑠𝑦𝑛 (𝒙) over 𝑝𝑜𝑏𝑠 (𝒙). After dropping the
irrelevant (with respect to the data) constant 𝐶, and substituting the density ratio model as defined in Equation 3, we have

S(𝑟 (𝒙), 𝑟 (𝒙)) = 1
2

∫
𝜽 ′𝝋(𝒙)′𝝋(𝒙)𝜽𝑝𝑜𝑏𝑠 (𝒙)𝑑𝒙 −

∫
𝝋(𝒙)𝜽𝑝𝑠𝑦𝑛 (𝒙)𝑑𝒙 (5)

as the objective function. The integrals in Equation 5 are typically not available, but can be replaced by empirical averages,
such that

Ŝ(𝑟 (𝒙), 𝑟 (𝒙)) = 1
2
𝜽 ′

(
1

𝑛𝑜𝑏𝑠
𝝋(𝒙𝑜𝑏𝑠)′𝝋(𝒙𝑜𝑏𝑠)

)
𝜽 −

(
1

𝑛𝑠𝑦𝑛
𝝋(𝒙𝑠𝑦𝑛)′1𝑛𝑠𝑦𝑛

) ′
𝜽 . (6)

It follows directly that the parameter vector 𝜽 can be estimated as

�̂� =

( 1
𝑛𝑜𝑏𝑠

𝝋(𝒙𝑜𝑏𝑠)′𝝋(𝒙𝑜𝑏𝑠)
)−1 ( 1

𝑛𝑠𝑦𝑛
𝝋(𝒙𝑠𝑦𝑛)′1𝑛𝑠𝑦𝑛

)
, (7)

which shows the least-squares nature of the problem. Because one would expect the density ratio to be non-negative, a
non-negativity constraint for 𝜽 can be added to the optimization problem, which would yield a convex quadratic optimization
problem that can be solved with dedicated software. However, ignoring the non-negativity constraint has the advantage that
Equation 6 has an analytical expression, which is numerically stable and computationally very efficient. The corresponding
downside of having negative estimated density ratio values can be remedied by setting negative values in �̂� to 0.

From here, we are left with two remaining tasks. First, one typically wants to add a regularization parameter 𝜆 to the
objective function to prevent overfitting and ensure positive-definiteness. In the unconstrained realm, a ridge penalty
(𝜆/2)𝜽 ′𝜽 is typically added to the optimization problem in Equation 6. Adding this to the solution in Equation 7 yields

�̂� =

( 1
𝑛𝑜𝑏𝑠

𝝋(𝒙𝑜𝑏𝑠)′𝝋(𝒙𝑜𝑏𝑠) + 𝜆𝑰𝑏
)−1 ( 1

𝑛𝑠𝑦𝑛
𝝋(𝒙𝑠𝑦𝑛)′1𝑛𝑠𝑦𝑛

)
, (8)

where 𝑰𝑏 denotes a 𝑏 × 𝑏 identity matrix. The regularization parameter 𝜆 can be chosen via cross-validation. Conveniently,
the leave-one-out cross-validation score can also be computed analytically when using unconstrained least-squares
importance fitting (see Section 3.4 in Kanamori, Hido, and Sugiyama 2009). Second, we need to specify the basis functions
used in the density ratio model. A common choice is to use a Gaussian kernel, which quantifies the similarity between
observations as

𝝋(𝒙) = 𝑲 (𝒙, 𝒄) = exp

(
− ∥𝒙 − 𝒄∥2

2𝜎2

)
, (9)

where 𝒄 denotes the Gaussian centers and 𝜎 controls the kernel width. The bandwidth parameter 𝜎 can also be selected
using cross-validation. Typically a subset of the numerator samples are chosen as the Gaussian centers, because the density
ratio tends to take large values at locations where the numerator density has more mass than the denominator density. To
estimate the density ratio accurately, we may use many kernels where the density ratio is expected to be large, whereas
having few kernels might suffice in the locations where the density ratio is small. Hence, we place many kernels where the
synthetic data density is large, by taking a sample of the synthetic records as Gaussian centers, with the number of samples
𝑛𝑐 dependent on the computational resources available (but typically min(100, 𝑛𝑠𝑦𝑛) ≤ 𝑛𝑐 ≤ min(1000, 𝑛𝑠𝑦𝑛)).

After estimating the density ratio, one can assess whether the numerator and denominator densities differ significantly via a
permutation test. To this end, Sugiyama, Suzuki, et al. (2011) propose a two-sample test that quantifies the discrepancy
between the numerator (synthetic) and denominator (observed) samples through the density ratio, using the Pearson
divergence P(𝑝𝑠𝑦𝑛 (𝒙), 𝑝𝑜𝑏𝑠 (𝒙)) as a test statistic:

P̂ (𝑝𝑠𝑦𝑛 (𝒙), 𝑝𝑜𝑏𝑠 (𝒙)) =
1

2𝑛𝑠𝑦𝑛

𝑛𝑠𝑦𝑛∑︁
𝑖=1

𝑟 (𝒙 (𝑖)
𝑠𝑦𝑛) −

1
𝑛𝑜𝑏𝑠

𝑛𝑜𝑏𝑠∑︁
𝑗=1

𝑟 (𝒙 ( 𝑗 )
𝑜𝑏𝑠

) + 1
2
. (10)

Intuitively, this discrepancy captures how different the synthetic data is from the observed data by measuring the distance
from the density ratio at the observed data points to the density ratio at the synthetic data points. As we show in our
empirical examples, this statistic is difficult to interpret in an absolute sense. However, we show that it is useful as a relative
measure of fit of the different synthetic data sets. Additionally, the value of the test statistic can be used to construct a
hypothesis test for the lack of fit of the synthetic data using a permutation test. An empirical 𝑝-value can then be calculated
as the proportion of test statistics under the null model that are greater than the observed test statistic. In this way, it can be
assessed whether the synthetic data model is misspecified, by comparing the observed value to what can be expected under
a correctly specified synthesis model.
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Density ratio estimation as a utility measure: Simulated and empirical examples

In this section, we illustrate density ratio estimation using unconstrained least-squares importance fitting. In a small
simulation, we show that the method gives reasonable results when the goal is to estimate a density ratio in several
parametric examples. Subsequently, we use these examples to show how the results of density ratio estimation can be used
as a measure of utility, and we describe how a lack of fit of the synthesis model can be inferred from the density ratio.
Starting with univariate examples, we compare the density ratio two-sample test with existing goodness-of-fit measures
(the Kolmogorov-Smirnov test and the 𝑝𝑀𝑆𝐸). As a final illustration, we build upon the work by Drechsler (2022), and
showcase how density ratio estimation improves upon utility assessment through the 𝑝𝑀𝑆𝐸 in a multivariate example. All
analyses were conducted in R (Version 4.3.0; R Core Team 2023), and the code is available on GitHub. The software used
to perform density ratio estimation is implemented in an R-package called densityratio (Volker 2023).

Density ratio estimation in simulated univariate examples

To provide an intuition about the performance of unconstrained least-squares importance fitting, we apply it to a simplified
example of a typical situation in the synthetic data field. When creating synthetic data, we often have a complex, usually
unknown, data distribution that we want to approximate with a model. We generally lack information to correctly model
real-world phenomena, and even if we would have sufficient information, some important factors might be missing from the
data, or the model might be so complex that it is unfeasible to actually simulate data from it. For the sake of illustrational
clarity, we generate univariate data according to four true data-generating mechanisms:

1. Laplace(𝜇 = 1, 𝑏 = 1)
2. Log-normal(𝜇log = log {𝜇2/

√︁
𝜇2 + 𝜎2

𝑥}, 𝜎2
log = log {1 + 𝜎2

𝑥/𝜇2}), with 𝜇 = 1 and 𝜎2
𝑥 = 2

3. Location-scale 𝑡-distribution 𝑙𝑠𝑡 (𝜇 = 1, 𝜏2 = 1, 𝜈 = 4)
4. Normal(𝜇 = 1, 𝜎2

𝑥 = 2)

Note that these four distributions all have the same population mean 𝜇 = 1 and the same population variance 𝜎2
𝑥 = 2. From

each distribution, we generate 200 data sets of size 𝑛𝑜𝑏𝑠 = 250. For all scenarios, we approximate the true data-generating
mechanism by drawing 200 data sets of size 𝑛𝑠𝑦𝑛 = 250 from a normal distribution (Normal(𝜇 = 1, 𝜎2

𝑥 = 2)), such that
we accurately model the mean and variance of each true data-generating distribution (see also Figure 2 for a graphical
depiction of the true and synthetic data densities). Note that in the fourth scenario, we thus model the true data-generating
distribution correctly, which is included to get some intuition on how density ratio estimation performs when we specify
the synthesis model correctly. All density ratios were estimated with the exact same model specifications: we used 100
observations from the synthetic data as Gaussian centers and performed cross-validation over 10 values of the Gaussian
kernel width 𝜎 and 10 values of the regularization parameter 𝜆.

Figure 3 shows how the estimated density ratios for the 200 simulated datasets in each scenario (the blue lines in each
subfigure) compared to the true density ratios (the black lines). In each of the four figures, the estimated density ratios
follow the general trend of the true density ratios. In the top-left plot, showing the ratio of the normal distribution over the
Laplace distribution, the density ratio decreases at the sides, then increases when moving towards the center, but decreases
again close to the center. The same can be observed in the bottom-left plot, which shows the normal distribution over the
𝑙𝑠𝑡-distribution. In the top right panel, the estimated density ratios are typically large for negative values, very close to zero
(or even negative) around the peak of the log-normal distribution, and subsequently increasing and later on decreasing
again. In the bottom right panel, where both distributions are identical, the majority of the estimated density ratios are
very flat, tending towards zero to some extent at the edges of the figure where only few data points are located. Moreover,
all figures show some highly variable estimated density ratios due to modest overfitting regardless of the cross-validation
scheme, whereas the normal versus log-normal figure shows many highly variable estimates outside of the center of the
figure, due to the fact that either the synthetic or the observed data has only few cases in these regions. Normally, the
stability of the estimates increases with the sample size. Figure 3 also shows one of the main advantages of density ratio
estimation as a utility measure, in the sense that it provides a quantification of the fit for every data point. At those locations
where the estimated density ratio takes large values, there are too many synthetic observations compared to what should
be expected based on the observed data, whereas at the points where the density ratio is close to zero, there are too few
synthetic observations relative to the observed data. Likewise, a high density ratio value for a synthetic record indicates that
this point deviates from what would be typical under the observed data-generating mechanism.
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Figure 2. True and synthetic data densities for the examples considered (Laplace, Log-normal, 𝑡 and
Normal), all distributions have mean 𝜇 = 1 and variance 𝜎2

𝑥 = 2. Note that the true and synthetic data
density in the bottom right plot are completely overlapping.

As it is hard to infer from visualizations whether the misfit could arise from chance alone, or whether the synthetic data
model is misspecified, we formally evaluate the fit of the synthetic data by performing statistical inference using the Pearson
divergence as a measure of discrepancy (see Equation 10). To explore the properties of the corresponding permutation
test, we compare it in terms of power and Type I error rate with the Kolmogorov-Smirnov test and with a 𝑝𝑀𝑆𝐸-based
test, obtained by performing a permutation test and assessing the proportion of times the permuted 𝑝𝑀𝑆𝐸s are larger
than the observed 𝑝𝑀𝑆𝐸 (Snoke et al. 2018). The 𝑝𝑀𝑆𝐸s are calculated by using the utility.tab() function with
default settings from the R-package synthpop (Nowok, Raab, and Dibben 2016). Table 1 shows that in terms of evaluating
the misfit of the synthetic data, the density ratio-based test has statistical power similar to the 𝑝𝑀𝑆𝐸-based test. That is,
when the synthetic data model differs from the observed data-generating mechanism, the density ratio-based test and the
𝑝𝑀𝑆𝐸-based test indicate significant misfit in approximately 60% of the simulations for the Laplace data, 100% for the
log-normal data and 50% for the location-scale 𝑡-distributed data. Both methods achieve considerably higher power than
the Kolmogorov-Smirnov test. When the synthesis model is correctly specified, all three methods achieve a nominal Type I
error rate close to 0.05.

Table 1. Proportion of significant tests for the fit of the synthetic data.

Data Density ratio Kolmogorov-Smirnov 𝑝𝑀𝑆𝐸

Laplace 0.620 0.375 0.610
Log-normal 1.000 1.000 1.000
𝑙𝑠𝑡 0.495 0.235 0.495
Normal 0.050 0.045 0.040
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Figure 3. Estimated density ratios by unconstrained least-squares importance fitting in four univariate
examples: A Laplace distribution, a log-normal distribution, a 𝑡-distribution and a normal distribution,
all approximated by a normal distribution with the same mean and variance as the original distributions.

Density ratio estimation for synthetic Current Population Survey data

To evaluate the properties of density ratio estimation in a real-life example, we repeat Drechsler’s (2022) illustration of the
𝑝𝑀𝑆𝐸 as a fit-for-purpose and global utility measure with a subset of the March 2000 U.S. Current Population Survey,
but now using density ratio estimation. Notably, we use the exact same (default) density ratio model specifications as
in the previous simulations, both for evaluating the utility of the variables separately and over the synthetic data sets as
a whole. We use exactly the same data as Drechsler (2022), that is, the variables Sex, Race, Marital Status, Highest
attained education level, Age, Social security payments, Household property taxes and Household income, measured on
𝑛 = 5000 individuals (descriptive statistics are provided in Table 2 and a graphical depiction of the numeric variables is
shown in Figure 6, both in Appendix A). Note that the continuous variables are typically non-normal, while the variables
Household property taxes and Social security payments in addition have a point-mass at zero. Data synthesis is done using
the R-package synthpop (Nowok, Raab, and Dibben 2016), using the same synthesis strategies as used in Drechsler (2022).
We thus refer to this paper for details about the synthesis strategies, and only briefly describe the synthesis models here.
Three of the synthetic data sets are created using parametric models: Sex and Race are synthesized with logistic regression
models, Marital status and Highest attained education are synthesized using multinomial regression, and all continuous
variables are synthesized using a linear model. The parametric synthesis models build up in complexity in how they model
the continuous variables in the following way: the first model (labelled naive) does not take the distributions of the variables
into account, and models the variables on the original scale; the second model (called transformed) transforms the variables
by taking their cubic root and subsequently applies a linear model to the transformed variables; the third model (labelled
semi-continuous) also transforms all variables to the cubic root scale, but in addition separately models the point mass at
zero for the variables Household property taxes and Social security payments separately, after which a linear model is
used for the non-zero values. The non-parametric synthesis model applies classification and regression trees (CART) to
all variables, augmented by smoothing through kernel density estimation in the terminal nodes. For all strategies, 𝑚 = 5
synthetic data sets are generated, and the utility is assessed by averaging the Pearson divergence over those sets. As noted
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Figure 4. Real and synthetic data distributions for the variables age, household income (income),
household property taxes (tax) and social security payments (social security) on a cubic root scale (using
𝑓 (𝑥) = sign(𝑥) |𝑥 |1/3).

by Drechsler (2022), based on the sequential refinements of the parametric synthesis models, one would expect the utility to
improve with every parametric model, leaving open how the CART models compare to the parametric models.

Figure 4 shows how the increasing complexity of the synthesis models leads to increasingly realistic synthetic data
distributions (all variables are plotted on a cubic root scale using 𝑓 (𝑥) = sign(𝑥) |𝑥 |1/3 to also allow for negative values). It
is evident that the naive synthesis strategy does a poor job for all variables except Age, whereas the transformed strategy
does a poor job for Tax and Social security. The semi-continuous strategy seems to fit well for all variables, similarly to the
data created with CART, although the latter method preserves the non-normality of the non-zero values in Social security
slightly better. The insights from visual inspection are entirely corroborated by the relative Pearson divergences as given
by density ratio estimation (see Figure 5). For all variables, the naive synthesis method performs worst. Typically, the
transformed synthesis improves the synthetic data to some extent, although the difference is relatively small for Age, because
here the naive synthesis strategy already performed reasonable. For both Age and Income, the transformed strategy performs
similarly to both the semi-continuous and the CART strategies, because for these variables there is no point-mass to model
separately. For the variables where a point-mass is modeled separately (e.g., Social security and Tax), the semi-continuous
approach clearly outperforms the transformed strategy. Lastly, CART outperforms the naive and transformed strategies,
and performs highly similar to the semi-continuous approach.

When modelling the density ratio over all variables in the data simultaneously (including the categorical variables, for
simplicity recoded as numeric variables to be included in density ratio estimation), we see the same picture emerging.
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Figure 5. Pearson divergence estimates after different synthesis strategies for the separate variables and
the synthetic data sets as a whole.

Figure 5 shows the stepwise improvements in utility when refining the synthesis models. Naive synthesis clearly performs
worst, followed by the transformed strategy. Both strategies are outperformed by the semi-continuous approach, which
performs more or less on par with CART. These results compare favorably with utility assessment through the 𝑝𝑀𝑆𝐸 as
reported in Drechsler (2022). The evaluation of utility through the 𝑝𝑀𝑆𝐸 shows no improvement when going from naive to
transformed synthesis, whereas some 𝑝𝑀𝑆𝐸 models qualified the naive approach as better than the transformed approach.
The improvement from the first two strategies to semi-continuous and CART was picked up by most 𝑝𝑀𝑆𝐸 models. Hence,
the utility assigned by density ratio estimation was more in line with the refinements to the synthesis models than the utility
scores that were obtained with the 𝑝𝑀𝑆𝐸 .

Discussion

When creating synthetic data with the goal of private data release, it is crucial to evaluate its quality. This allows the data
provider to decide whether the synthetic data is useful for the purposes of the release or requires further refinements, and to
inform the data user about the analyses that can be reliably conducted. In this paper, we showed that density ratio estimation
provides a promising framework to evaluate the utility of synthetic data and we implemented the approach in the R-package
densityratio (Volker 2023). In a small simulation, we showed that for sample sizes as small as 250 observations, it was
possible to obtain a rather accurate estimate of the true density ratio. Moreover, in terms of statistical power, density ratio
estimation performed on par with the 𝑝𝑀𝑆𝐸 and outperforms the Kolmogorov-Smirnov test in the univariate comparisons
considered. When evaluating density ratio estimation on multiple synthetic versions of a real-world data set, we showed
that the method was able to pick up all improvements in the synthesis models made, in contrast to the 𝑝𝑀𝑆𝐸 (as shown by
Drechsler 2022). Moreover, whereas Drechsler (2022) showed that quantification of the utility through the 𝑝𝑀𝑆𝐸 was
highly dependent on the propensity score model, density ratio estimation possesses automatic model selection in terms of
its hyperparameters, and thus requires almost no user-specification. We emphasize that we used the same default settings
for our simulations and for modelling all individual variables and the entire data sets in our empirical example, regardless of
the varying scales of the variables and other variable-specific peculiarities, such as point masses and non-normality.

Although this paper focused on various comparisons, we note that there are many connections between density ratio
estimation and existing utility measures. For example, the 𝑝𝑀𝑆𝐸 can be considered as an instance of density ratio
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estimation, in which the propensity scores are used to model the density ratio. Specifically, the propensity scores can be
transformed into the posterior odds of any record belonging to the synthetic data versus the observed data, which yields an
estimate of the density ratio. Additionally, Sugiyama, Suzuki, and Kanamori (2012a) show that density ratio estimation
can be regarded as divergence estimation between the numerator and denominator density. As such, the framework also
encompasses estimation of, for example, the Kullback-Leibler divergence, proposed as utility measure by Karr et al. (2006).
Lastly, density ratio estimation can be seen as an extension of the “ratio of estimates” utility measure (Taub, Elliot, and
Sakshaug 2020), which is defined for categorical data as the ratio of observed and synthetic frequencies (scaled to be
between 0 and 1 by putting the largest count in the denominator), to continuous data. As such, the density ratio framework
encapsulates various measures to evaluate the utility of synthetic data.

Expanding upon the appealing properties discussed in this paper, we foresee three additional advantages of the density ratio
framework. (1) Utility on the level of individual data points. The density ratio is estimated over the entire (multivariate)
space of the data, and these estimates can be used to quantify the deviation of every synthetic data point with respect to the
observed data. These values can help to identify sub-spaces that are poorly reproduced in the synthetic data, but they might
also yield additional benefits. On a low level, these values might be used to discard observations that are considered as
being too far from the observed data to be realistic, or resample observations that are typical in the observed data but occur
infrequently in the synthetic data. On a higher level, one could potentially use density ratio values to reweigh analyses
with synthetic data to bring the results closer to the real data. Future research should evaluate the merits of this approach,
but also potential privacy risks of disseminating such weights. (2) Density ratios for specific utility. Another potential
benefit is that the use of the method is not necessarily restricted to the level of the data at hand. Density ratio estimation
could give rise to analysis-specific utility measures by applying the framework on the posterior distributions of parameters
(or an approximation hereof). That is, if the distribution of the parameters of the analysis model can be approximated,
for example by a multivariate normal distribution, or when samples from the parameter distribution are available, it is
possible to either analytically calculate the density ratio, or estimate it using the techniques described above. The resulting
density ratio can then again be used to quantify how similar the distributions are. (3) Extensions to high-dimensional
data. When the number of variables grows large relative to the number of observations, direct density ratio estimation
through unconstrained least-squares importance fitting might become inaccurate. However, the density ratio estimation
framework possesses readily available extensions that include dimension reduction as part of the estimation process, which
yields the advantage of simultaneously optimizing the density ratio solution with the dimension-reduced subspace of the
data (Sugiyama, Yamada, et al. 2011).

Finally, let us remark that there are several open questions that need to be addressed before density ratio estimation can be
fully incorporated in synthetic data evaluation pipelines. First, methodological research should investigate how to deal
with categorical variables. In the density ratio estimation framework, the focus has almost exclusively been on numeric
data, whereas in practical situations, categorical data is all too common. In this paper, we dealt with the issue by simply
transforming the categorical variables into numeric variables, but other techniques might yield more accurate results. To
name three other strategies, one could transform the categorical variables into dummy variables, use a different distance
metric that allows for categorical data when specifying the kernel, or assume an underlying continuous latent space, and
model the categorical variables on this space. Second, which default settings to use in density ratio estimation is still an
open question. Although we showed that our default settings performed reasonably, most choices lack a strong theoretical
justification. Potentially, the utility of synthetic data can be evaluated much more accurately by, for example, choosing a
different kernel, choosing the centers in the Gaussian kernel in a different way, or using a broader range of bandwidth and
regularization parameters. Lastly, it must be evaluated what information from density ratio estimation can be released to the
public without incurring severe privacy risks. Presumably, releasing the Pearson divergence, potentially augmented with a
𝑝-value to indicate the lack of fit of the synthetic data, will yield only little additional privacy risk. However, releasing
visualizations of the estimated density ratio or the estimated density ratio values themselves might cause unacceptable
threats, especially for observations in the tails of the distribution. Future research can make efforts to privatize the output
from density ratio estimation, or at least investigate what risks are related to releasing the output of the estimation process.
With these promising avenues for extensions in mind, we conclude that the density ratio estimation framework provides a
viable and intuitive alternative to existing utility measures that can enhance synthetic data workflows.
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Appendix A - Description of the CPS data

Table 2. Descriptive statistics of the considered subset of observations and variables in the March 2000
U.S. Current Population Survey.

Overall

(N=5000)
Sex

Male 2823 (56.5%)
Female 2177 (43.5%)

Race
White 4272 (85.4%)
Non-white 728 (14.6%)

Marital status
Married 2698 (54.0%)
Separated 564 (11.3%)
Widowed 692 (13.8%)
Single 145 (2.9%)
Widowed or divorced 901 (18.0%)

Highest attained education level
No High School Diploma 815 (16.3%)
High School Diploma 1610 (32.2%)
Associate or bachelor’s degree 2121 (42.4%)
Master’s degree or higher 454 (9.1%)

Age
Mean (SD) 48.2 (16.8)
Median [Min, Max] 46.0 [15.0, 90.0]

Social security payments
Mean (SD) 2180 (4680)
Median [Min, Max] 0 [0, 50000]

Household property taxes
Mean (SD) 1020 (2500)
Median [Min, Max] 450 [0, 98400]

Household income
Mean (SD) 54000 (50400)
Median [Min, Max] 40700 [1.00, 583000]
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Figure 6. Histograms of the considered subset of observations and continuous variables in the March
2000 U.S. Current Population Survey.
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