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Abstract
This study utilizes a standardized "census-like" dataset that is structured uniformly across all participating
countries to assess disclosure risk based on grid data. We begin by evaluating and comparing the risk using
this approach. Next, we apply spatial SDC methods from the R package sdcSpatial, including kernel density
smoothing and quad tree aggregation. We re-evaluate the disclosure risk using these methods and analyze the
resulting utility loss. Our analysis will be conducted across multiple countries, allowing for a comprehensive
comparison of the utility loss between them.



1 Introduction

Population grids are by now well-established products of National Statistical Institutes. They map the distribution
of population units (persons, families, households, or similar) in geographic space, using as domain a set of
regular, small-scale squares, the grid cells. For our purposes it will be useful to view the gridded map as akin
to a two-dimensional histogram and each cell as a bin. One advantage over irregular spatial references, like
administrative areas, is then that spatial patterns can, in principle, be observed in a comparable manner over
multiple countries.
A disadvantage is that grid cells, as small areas, raise the potential for disclosing information on population
units, as we may find many cells with only a few inhabitants. To address this problem, methods of Statistical
Disclosure Control (SDC) for grid maps have been suggested by Behnisch et al. (2013) and de Jonge and de
Wolf (2016), among others. Several such methods have been implemented in the R package sdcSpatial by
de Jonge and de Wolf (2022), which we employ here.
Our contribution in this paper is two-fold: For once we present the results of experiments with SDC methods
for grid data, conducted over multiple contributing countries. We utilize "census-like" population grids from
Austria (Statistics Austria), France (Insee), Germany (Destatis) and the Netherlands (CBS). Risk measures will
be computed before and after SDC. Secondly, we test and compare two metrics for the utility loss resulting from
SDC: the Hellinger distance and Kantorovich-Wasserstein distance.
The paper proceeds as follows: In section 2 we outline methods for disclosure control applicable to grid data.
In section 3 we consider metrics for measuring the utility loss in protected grids. Section 4 describes the setup
and results of our multiple-country analysis. We finish in section 5 with some lessons learned and an outlook
on areas that may deserve further investigation.

2 SDC Methods

Geographical grid data can be viewed as table cells, so such data could, in theory, be published as a large table.
However most often grid data is plotted on a cartographic map, to show spatial patterns and to make more
explicitly use of the geo-referencing character of the data. Because of this dual character of publishing grid
data, different SDC methods are available. Some of these methods can be categorized as tabular approaches,
where grid data is first represented as table cells, and then the resulting secure table is plotted on the map. One
example of such a method is cell-suppression. However, tabular methods often neglect the geographical nature
of the grid data, failing to use the spatial neighborhood of a unsafe cell to solve the SDC problem. Spatial
statistical disclosure methods try to preserve the geographical utility of grid data. Examples of such methods are
the quad tree and smoothing methods. Spatial sdc methods can be applied on a spatial population distribution,
variable distribution, probability distribution or mean variable distribution. The experiments in this paper are
restricted to the spatial population distribution. In this section we will describe the three methods that can be
used to protect the grid data that will be used in our experiments.

2.1 Cell removal

Whenever cells are unsafe to publish (for definition of the risk we used in the experiments, see section 3), the
cell is not published. Essentially this is a method that is applied to a tabular representation of the grid data, it
suppresses the sensitive cell and its value. When plotted on a map, it means that an unsafe cell does not get a
colour corresponding to its value. It is suggested to use a specific colour for ‘not available’ (NA), to distinguish
between cells without any observation and cells that are not published.
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2.2 Quad tree

The quad tree method implemented in the R package sdcSpatial generalizes the method as described by Suñé
et al. (2017). The method reduces sensitivity by aggregating sensitive cells with its three neighbours, and does
this recursively until no sensitive cells are left or when the specified maximum zoom level has been reached.
Given the origin of the raster, grid cells are defined for each level of detail a priori. Each grid cell at a certain
level is constructed by combining four grid cells of one level down (more detailed). See figure 1 for an example
of a priori defined grid cells at three levels of detail.
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Figure 1. Example of three levels of grid cells

Assume that grid cell number 24 at the most detailed level is unsafe (the grayed cell in figure 1). The quad tree
method then looks one level up to find a less detailed grid cell that contains the problematic lower level grid
cell. In this case it would find grid cell 𝐴4 that consists of the four grid cells 21, . . . , 24 at the more detailed
level. In case cell 𝐴4 is still unsafe, the method again goes one level up and finds grid cell A that consists of
grid cells 𝐴1, . . . , 𝐴4 of the previous level of detail. This process continues until either a safe grid cell is found
or the highest level of the a priori defined grid cells is reached. The most detailed level cells belonging to a safe
less detailed cell will share the same adjusted value, which aggregates to the sum of the original cell values.
Note that the aggregation process thus depends on the a priori chosen grid cells at the different levels.

2.3 Smoothing

Spatial smoothing uses the spatial structure of grid data so that the values of neighboring cells help to protect
sensitive values. In the examples of this paper we are interested in the population density as function of the
location. We will denote this density as 𝑓 (𝑥, 𝑦), where (𝑥, 𝑦) is a location, i.e., a point in an area A ⊂ R2.
The population in region A can then be seen as a sample from that population distribution, resulting in 𝑁
observations (𝑥𝑖 , 𝑦𝑖) ∈ R2 for 𝑖 = 1, . . . , 𝑁 . Each observation is then the location of an individual.
A non-parametric estimator of the population density can be obtained using kernel smoothing (see e.g., Wand
and Jones, 1994). The approach used in this paper follows the kernel density smoothing implementation of
sdcSpatial. That is, the mass of the observed population is spread out over a neighbouring region by means
of a Gaussian kernel. The estimate of the population density at point (𝑥, 𝑦) is then the sum of the spread out
mass at that location:

𝑓ℎ (𝑥, 𝑦) =
1
ℎ2

𝑁∑︁
𝑖=1

𝐾

(𝑥 − 𝑥𝑖
ℎ

,
𝑦 − 𝑦𝑖
ℎ

)
(1)

where 𝐾 (𝑥, 𝑦) = (1/2𝜋) exp
(
−(𝑥2 + 𝑦2)/2

)
is the bivariate Gaussian kernel. The bandwidth ℎ determines the

size of the region over which the mass is smoothed out.
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Note that in the current implementation in sdcSpatial the bandwidth is a constant value for all locations, and
that the same bandwidth is used in both dimensions resulting in a symmetrically scaled kernel.

3 Risk and Utility measures

3.1 Risk assessment

Denote the area of interest by A ⊂ R
2 (for example the national territory or a subsection thereof). We

consider 𝑁 population units, geographically identified by their planar coordinates (𝑥𝑖 , 𝑦𝑖) ∈ A, 𝑖 = 1, . . . , 𝑁 .
The geographic grid constitutes a tiling of A into very small subareas of grid cells, which we denote by
C𝑗 , 𝑗 = 1, . . . , 𝑀 . The cell-level count is the number of population units located in a given cell, i.e.

𝑟 𝑗 =

𝑁∑︁
𝑖=1
1
[
(𝑥𝑖 , 𝑦𝑖) ∈ C𝑗

]
∀ 𝑗 = 1, . . . , 𝑀

where 1[·] is the indicator function. We consider here a straightforward minimum count criterion, by which
a cell is considered at risk, if it contains fewer than 𝑘 ∈ N+ units (cf. de Wolf and de Jonge, 2017). The risk
indicator for a cell is 𝑅 𝑗 (𝑘) = 1

[
𝑟 𝑗 < 𝑘

]
∀ 𝑗 = 1, . . . , 𝑀 . Two global risk measures can then be defined as the

share of cells at risk 𝑅 (C) and the share of population at risk 𝑅 (𝑁 ) for which we have:

𝑅 (C) (𝑘) :=
1
𝑀

𝑀∑︁
𝑗=1

𝑅 𝑗 (𝑘) and 𝑅 (𝑁 ) (𝑘) :=
1
𝑁

𝑀∑︁
𝑗=1

𝑅 𝑗 (𝑘) · 𝑟 𝑗 (2)

3.2 Utility assessment

3.2.1 A map seen as a table. To assess the loss of information due to a protection process, we have to compare
the original map with the protected one. In a first approximation, a map can be seen as a table where the cells
are described by the polygons and filled in with the count (population or households for instance) displayed in
the map. Then, each utility metric relevant for frequency tables is relevant for maps. We choose the Hellinger
distance for this purpose (See Shlomo (2007) for instance). A small distance implies small distortion and is
therefore generally desirable.
Denote the original (unprotected) raster by R and the protected version by R′, each having the same 𝑀 cells
with values 𝑟 𝑗 and 𝑟 ′

𝑗
, 𝑗 = 1, . . . , 𝑀 respectively. The Hellinger distance on the interval [0 , 1] is:

𝐻𝐷 (R,R′) = 1
√

2

√√√√√ 𝑀∑︁
𝑗=1

©«
√√

𝑟 ′
𝑗∑𝑀

𝑗=1 𝑟
′
𝑗

−
√︄

𝑟 𝑗∑𝑀
𝑗=1 𝑟 𝑗

ª®¬
2

(3)

3.2.2 How to assess the distortion of spatial patterns? A metric such as the Hellinger distance does not take
into account the spatial distribution of the units. And, while releasing perturbed maps, to ensure that we haven’t
perturbed too much the spatial distribution is at least as important as to ensure a good preservation of the values
cell by cell.
When the original phenomenon displayed on the map is characterized by a spatial dependency, we’d like to
ensure that this dependency is not broken by the protection process. For this purpose, M. Buron & M. Fontaine
suggest to compare the Moran’s I for the two maps (See Buron and Fontaine (2018)). The Moran’s I measures the
intensity of the spatial autocorrelation of the phenomenon. Then, the more the coefficient is distorted, the more
the spatial information of the phenomenon is lost. With some protection process, the spatial autocorrelation will
be automatically reduced (noise injection) and with other ones it will be automatically reinforced (smoothing).
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It is less unpredictable for other ones (cell suppression for instance). We, then, tend to prefer SDC methods that
preserve this coefficient as well as possible.
In the same perspective to focus on the main spatial patterns of the map, de Wolf and de Jonge (2017) suggest a
utility metric able to monitor the distortion of cold and hot spots due to the protection process. Actually, three
utility measures are suggested, one related to the location of the spots, one related to their shape and the last
one related to their size.
For this paper, we suggest to use the Kantorovic-Wasserstein Distance (KWD) as it is implemented in the
SpatialKWD R package. This distance, also called Earth Mover Distance, comes from the transportation
problem: What is the minimal cost to transport a mass from one distribution to another? Whereas the Hellinger
distance, as many other ones, could be considered as a "bin-by-bin" distance, the KWD can be viewed as a
"cross-bin" distance: each bin (our grid cells) is put in relation with all other ones (Ricciato (2023)).
Formally, KWD is defined as the solution to an optimization problem: We shift around distribution mass of
Δ𝑟 𝑗𝑘 between the 𝑗 th and 𝑘th grid cell, until R′ is transformed into R (or the other way around).1 Each such
shift is evaluated with costs equivalent to the distance covered, denoted by 𝑑 𝑗𝑘 . Our implementation uses the
Euclidean distance between cell centroids, measured in multiples of the cell width. We need to solve:

𝐾𝑊𝐷 (R,R′) = min
Δ𝑟 𝑗𝑘

1∑𝑀
𝑗=1 𝑟 𝑗

𝑀∑︁
𝑗=1

𝑀∑︁
𝑘=1

Δ𝑟 𝑗𝑘𝑑 𝑗𝑘

s.t.
𝑀∑︁
𝑘=1

Δ𝑟 𝑗𝑘 = 𝑟 𝑗 ∀ 𝑗 = 1, . . . , 𝑀

𝑀∑︁
𝑗=1

Δ𝑟 𝑗𝑘 = 𝑟 ′𝑘 ∀𝑘 = 1, . . . , 𝑀

Δ𝑟 𝑗𝑘 ≥ 0 ∀ 𝑗 , 𝑘 = 1, . . . , 𝑀

(4)

The following example gives an intuition on how KWD takes the spatial distribution of error into account.
Consider a 4 × 4 grid, symbolized by A, which maps the ground truth.

A =

0 1 0 0
1 1 1 0
0 1 0 0
0 0 0 0

B1, . . . ,B4 are different alterations, loosely corresponding to protection mechanisms. For instance, B1 and B2
are aggregations, whereas B3 and B4 are randomly shifting some cell values.

B1 =

0 0 0 0
0 5 0 0
0 0 0 0
0 0 0 0

, B2 =

0 0 0 0
0 0 5 0
0 0 0 0
0 0 0 0

, B3 =

0 0 1 0
1 1 1 0
1 0 0 0
0 0 0 0

, B4 =

0 0 0 1
1 1 1 0
0 0 0 0
0 0 0 1

Intuitively, we will tend to prefer B1 over B2, since while both come with the same level of aggregation, the
former preserves the original’s center of gravity, while the latter does not. Similarly, considerations of utility
would lead us to prefer, in most cases, B3 over B4: while both shift two cell values, the first shifts each of them
only to direct neighbors, the other relocates to the edges of the map. It is easy to verify, however, that bin-by-bin
utility measures, such as the Hellinger distance, do not cover this rationale as we get 𝐻𝐷 (A,B1) = 𝐻𝐷 (A,B2)
and 𝐻𝐷 (A,B3) = 𝐻𝐷 (A,B4). They are ignorant of geographic considerations. The Kantorovic-Wasserstein
distance, on the other hand, gives for the above cases the desired 𝐾𝑊𝐷 (A,B1) < 𝐾𝑊𝐷 (A,B2) as well as
𝐾𝑊𝐷 (A,B3) < 𝐾𝑊𝐷 (A,B4).

1Being a proper distance, we have 𝐾𝑊𝐷 (R,R′) = 𝐾𝑊𝐷 (R′,R).
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Our choice of the KWD was in part inspired by Ricciato and Coluccia (2023). The SpatialKWD package
provides an implementation of such a distance to compare two maps, a map being seen as a 2D-distribution. As
its exact computation is very time-demanding, the package implements a "very tight approximation", following
the work of Bassetti et al. (2020).
Several considerations have to be made before using this tool in an effective and consistent way.

• Which distance to use for assessing the cost of transporting a value from point 𝐴 to point 𝐵? The
Euclidean distance is the default, but actually the choice depends on the physical interpretation of
this transportation. For instance, if we were comparing a map of residential locations with a map of
working locations, the physical interpretation of the transportation problem is related to commuting and
a travel time distance could be more appropriate. In the case of an SDC protection process, the physical
interpretation is not so obvious. Since we consider the use case of a thematic map, we choose, as a
first approximation, to interpret transportation analogous to eye movement of an observer, for which the
Euclidean distance seems a sensible pick.

• Geographical areas are not always convex. In that case, the Euclidean distance could be replaced by the
least internal path to join two points of the area. Here, we choose to keep the Euclidean distance even in
non-convex areas.

• The KWD is fitted to compare two maps displaying the same total mass. Some protection methods
(suppression for instance) modify the total mass displayed. One way to deal with this is to set a fixed
per-unit mass penalty cost as the maximum distance between two points in the map for the remaining
or lacking mass. Another is to virtually re-insert missing mass before computing KWD at one or more
sensible proxy-locations.

3.3 Focus areas

The spatial patterns to compare depend on the extent of the map. The larger the map the more complex the
spatial patterns. Furthermore, a user will rarely view the whole map, but rather show interest in some subsection,
for instance their home region. It therefore makes sense to base utility measures not (only) on large-scale maps,
but to consider a selection of smaller maps. We call any subarea A𝑖 ⊆ A a focus area. When assessing risk
and utility metrics for one such focus area, we consider only the corresponding part of the population grid, i.e.
the set of cells

{
𝑗 = 1, . . . , 𝑀 :

(
𝑥 𝑗 , 𝑦 𝑗

)
∈ A𝑖

}
, where

(
𝑥 𝑗 , 𝑦 𝑗

)
are the planar coordinates of the center point

of the 𝑗 th grid cell. For simplicity, we employ here only square focus areas that are at the same grid resolution
as the overall area.
The R package lets us choose to compute the Kantorovic-Wasserstein distance only on some A𝑖 , while taking
into account the whole A. Hence, the transportation of masses is computed only within the focus area, but, if
needed, some masses can be transported from inside to outside and vice versa.

4 Experiments

The aim of the experiment is to protect a map of the number of persons or households per grid cell. The grid is
based on the INSPIRE (2014) standard ETRS89-LAEA for geographic grid systems. This is done for different
countries. The protection will be applied using the R package sdcSpatial and results are compared across
countries using risk and utility measures.

4.1 Datasets

We start from a microdata set containing persons or households as well as X and Y coordinates and raster cells
which follow the INSPIRE (2014) standard. Depending on the country the grid cells are either 500m × 500m
or smaller. Table 1 shows example data from the Austrian use case. For reasons suggested above, we focus our
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analysis on selected regions with specific characteristics regarding terrain and population distribution. Table 2
gives an overview of the focus areas used for each contributing country. Below we give a short overview of the
characteristics of each contributing microdata set by source country.

Table 1. Example of microdata from Austrian use case

PID L000500 Y X
00000001 500mN28215E46275 2821500 4627500
00000002 500mN28085E47890 2808500 4789000
00000003 500mN28025E47925 2802500 4792500
00000004 500mN28120E47985 2812000 4798500
00000005 500mN27605E47900 2760500 4790000
00000006 500mN28040E47940 2804000 4794000

4.1.1 CBS. For the CBS application the population register for 2020 was used, which was extracted from the
social statistical system of Statistics Netherlands (CBS). The dataset includes amongst other variables age, sex
and educational attainment on a 100m × 100m geographic raster. Each registered inhabitant is assigned to a
raster cell. To facilitate analysis the raster was coarsened to a grid of 500m × 500m.
Spatial distributions for urbanized and rural areas are very different and often take different tuning parameters.
To indicate how the statistical disclosure methods differs between different regions, four different regions within
the Netherlands were selected. First, the capital city Amsterdam, which is a densely populated and urbanized
area. Second, the medium sized and young city of Almere where many inhabitants are commuters to different
cities. Urbanized, but enclosed by nature and rural areas. Third the rural area of Drenthe, which is sparsely
populated and last the region Parkstad, which contains cities and rurals area near the Aachen region in Germany.

4.1.2 Destatis. For the German application Census 2011 results for persons were used. Demographic variables
like age, sex or religion are collected on a fine-grained 100m × 100m geographic raster. Household addresses
are used for the assignment. Subsequently, each person is located at the centroid of its assigned raster cell. The
cells are coarsened to the 500m × 500m resolution for analysis.
Focus areas are chosen to reflect a range of spatial structures. The first is the Ruhr valley area, composed of
a cluster of multiple, integrated cities and homogeneously high population density. The second are the twin
cities of Mainz and Wiesbaden with their corresponding surroundings. They form a diverse collection of urban,
rural, forest and river parts. The third focus area is centered between the town of Stralsund and the island of
Rügen at the Baltic Sea coast; it is characterised by an intricate mix of settlements and uninhabitable water
areas. Finally, a map section close to the Alps in the historical region of Allgäu is chosen, in which farming and
small settlements create an overall homogeneous, low population density.

4.1.3 INSEE. For the French use case, we used the 2017 tax data from the so-called Filosofi system. The
data are available on the website of Insee2. Socio-demographic information are displayed on a 200m × 200m
squares grid. We focused our analysis on the department of La Réunion. We chose to focus our attention on
4 areas, three dense areas picked along the coast of the island (Saint-Denis, Saint-Gilles and Saint-Pierre) and
one sparse area picked in its center (La Plaine) (See figure 2). Saint-Denis in the north-east of the island is the
most dense area with nearly 700 inhabitants per 𝑘𝑚2 whereas the density of the area called La Plaine, in the
rural and steeper center of the island, is less than 40 inhabitants per 𝑘𝑚2. The areas of Saint-Gilles (north-east)
and Saint-Pierre (south-east) have been chosen so as to include a large conurbation of cities around a populated
center. Hence, both are quite larger than the two others and mix urban centers and some rural areas connected
to them.

2https://www.insee.fr/fr/statistiques/6215138?sommaire=6215217
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Table 2. Focus areas

country focus area size size initial risk
(cells) (km2) % cells % pop.

AT

Vienna & Suburbs 85 × 85 1806.25 10.09 0.03
Bregenz 39 × 39 380.25 9.57 0.08
Alps in Tyrol 73 × 73 1332.25 17.10 0.59
Krems an der Donau 41 × 41 420.25 12.38 0.28

DE

Ruhr valley 55 × 55 756.25 3.9 0.02
Mainz & Wiesbaden 41 × 41 420.25 9.2 0.04
Strelasund region 75 × 75 1406.25 22.2 0.64
German Allgäu 55 × 55 756.25 24.4 1.06

FR

Saint-Denis 45 × 45 81.00 31.4 2.43
Saint-Pierre 109 × 109 475.24 49.1 8.63
La Plaine 41 × 41 67.24 72.2 31.63
Saint-Gilles 71 × 71 201.64 51.0 10.31

NL

Amsterdam 59 × 46 678.50 12.1 0.04
Almere 47 × 42 493.50 13.9 0.07
Drenthe 89 × 111 2469.75 21.7 0.64
Parkstad 31 × 44 341.50 11.1 0.09

Figure 2. Number of Households by 200 × 200 meters grid squares in La Réunion.
Red squares are the focus areas
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4.1.4 Statistics Austria. For the use case at Statistics Austria we used the Austrian Rich-Frame. This internally
compiled data set contains the reference frame for persons and households and is used as the sampling frame
to draw a number of surveys. The data set is compiled from various administrative data sources and holds
information for each person from the Central Population Register (such as age, gender, citizenship), the Building
and Housing register as well as income-, tax-, education- or employment related information. Furthermore, it
contains regional information at a very detailed geographical level. The data set is pseudo-anonymized which
means that no direct identifying variables or coordinates are contained in the data set. The frame is updated
quarterly and it takes around 6 weeks after a quarter change until the data set for the reference quarter has been
finalized. For our use case we chose 4 focus areas. The first is the capital Vienna including the surrounding
suburbs. The second is Bregenz including bordering municipalities containing the country border and the border
to the Bodensee. Thrid and furth are regions with lower population density, namely part of the Alps in Tyrol
and rural area in lower Austria including Krems an der Donau and surrounding municipalities.

4.2 Application

For applying the protection methods we mainly used the R package sdcSpatial. Example code can be found
on https://github.com/sdcTools/sdcSpatialExperiment.
Our cases applied the following protection methods:

• Cell removal ∼ sdcSpatial:::remove_sensitive
• Quad tree protection ∼ sdcSpatial:::protect_quadtree
• Kernel density smoothing ∼ sdcSpatial:::protect_smooth

There are slight differences in the use cases of the different countries:
• CBS For the Dutch (NL) focus regions, a minimum of 5 contributors in a grid cell was used to test for

sensitivity. Four protection methods have been applied
– Suppression of sensitive cells (‘removal’)
– Quadtree with zoom levels 2 (‘quad tree I’) and 3 (‘quad tree II’)
– Spatial smoothing with a Gaussian kernel and a bandwidth of 500m (‘smoothing’)

• Destatis Risk was assessed by the minimum count criterion, where a cell is considered sensitive if it
contains fewer than 5 persons. Four protection methods were considered for the German data set:
– Suppression of the sensitive cells (‘removal’);
– Quadtree with a maximum zoom of 2 (‘quad tree I’) and 3 (‘quad tree II’);
– Spatial smoothing with a Gaussian kernel and a bandwidth of 500m (‘smoothing’).

• INSEE For the French case (FR), four protection methods have been considered:
– Suppression of the sensitive cells (‘removal’);
– Quadtree with two different maximum of zoom of 3 (‘quad tree I’) and 4 (‘quad tree II’);
– Spatial smoothing with a Gaussian kernel and a bandwidth of 200m (‘smoothing’).

• Statistics Austria Grid cells with a cell count below 5 were considered sensitive. For the use case at
Statistics Austria the following protection methods were considered:
– Suppression of the sensitive cells (‘removal’);
– Quadtree with two different maximum of zoom of 2 (‘quad tree I’) and 3 (‘quad tree II’);
– Spatial smoothing with a Gaussian kernel and a bandwidth of 500m (‘smoothing’).

4.3 Results

The initial risk assessment for focus areas is included in table 2 in the two rightmost columns. Tables 3 to 6
show risk and utility measures after applying SDC methods. Columns ’% cells’ and ’% pop.’ also include grid
cells which were not populated in the original data set.
Notably, while computation times for the Hellinger Distance were negligible, calculating the Kantarovich-
Wasserstein Distance for a large number of grid cells will typically be more time-consuming. Other than with
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Table 3. Results for the Dutch data set by focus area

focus area (NL) method residual risk utility
% cells % pop. HD KWD

Amsterdam

removal 0 0 .01 .004
quad tree I 8.1 0.01 .08 .015
quad tree II 0.8 < .01 .13 .054
smoothing 1.1 < .01 .22 .257

Almere

removal 0 0 .02 .009
quad tree I 15.9 0.03 .09 .018
quad tree II 1.8 < .01 .13 .054
smoothing 1.3 < .01 .25 .316

Drenthe

removal 0 0 .06 .080
quad tree I 13.2 .13 .16 .062
quad tree II 0.3 < .01 .23 .164
smoothing 0.6 < .01 .31 .407

Parkstad

removal 0 0 .02 .007
quad tree I 6.6 0.01 .13 .039
quad tree II 0 0 .20 .124
smoothing 0 < .01 .27 .352

Table 4. Results for the German data set by focus area

focus area (DE) method residual risk utility
% cells % pop. HD KWD

Ruhr valley

removal 0 0 .009 .004
quad tree I 0.7 < .001 .079 .015
quad tree II 0 0 .095 .025
smoothing 0 0 .280 .381

Mainz & Wiesbaden

removal 0 0 .014 .006
quad tree I 9.5 .012 .124 .034
quad tree II 0.3 < .001 .227 .162
smoothing 0 0 .365 .493

Strelasund region

removal 0 0 .057 .176
quad tree I 21.1 .207 .165 .064
quad tree II 2.2 .003 .222 .136
smoothing 0 0 .451 .627

German Allgäu

removal 0 0 .073 .229
quad tree I 10.6 .161 .188 .083
quad tree II 0 0 .239 .161
smoothing 0 0 .415 .625

bin-by-bin measures, it takes longer to calculate a large KWD than a short one. The approximation we used
guarantees a result within 1.29% of the true value as per Gualandi (2022).
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Table 5. Results for the French data set by focus area

focus area (FR) method residual risk utility
% cells % pop. HD KWD

St-Denis

removal 0 0 0.111 0.284
quad tree I 3.48 0.01 0.242 0.196
quad tree II 0 0 0.244 0.201
smoothing 0 0 0.237 0.273

St-Pierre

removal 0 0 0.210 1.340
quad tree I 5.64 0.06 0.310 0.338
quad tree II 0 0 0.334 0.451
smoothing 0 0 0.248 0.267

La Plaine

removal 0 0 0.416 1.547
quad tree I 11.98 0.36 0.429 0.616
quad tree II 0 0 0.456 0.851
smoothing 0 0 0.304 0.311

St-Gilles

removal 0 0 0.230 1.167
quad tree I 10.54 0.1 0.359 0.467
quad tree II 0 0 0.394 0.655
smoothing 0 0 0.286 0.340

Table 6. Results for the Austrian data set by focus area

focus area (AT) method residual risk utility
% cells % pop. HD KWD

Vienna & Suburbs

removal 0 0 0.014 0.008
quad tree I 0.030 < .001 0.086 0.022
quad tree II 0.002 < .001 0.125 0.062
smoothing < .001 < .001 0.273 0.351

Bregenz

removal 0 0 0.042 0.009
quad tree I 0.032 < .001 0.097 0.050
quad tree II 0.002 < .001 0.154 0.178
smoothing 0 0 0.304 0.419

Alps in Tyrol

removal 0 0 0.056 0.053
quad tree I 0.042 < .001 0.151 0.061
quad tree II 0.004 < .001 0.210 0.147
smoothing 0.001 < .001 0.381 0.577

Krems an der Donau

removal 0 0 0.042 0.029
quad tree I 0.037 < .001 0.174 0.078
quad tree II 0.002 < .001 0.261 0.213
smoothing 0 0 0.471 0.664
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4.4 Discussion

We notice that KWD and HD yield the same rank-ordering of SDC methods and parameterizations between
quad tree and smoothing, but judge removal quite differently. Indeed, KWD seems to penalize more the removal
method than the quad tree or the smoothing, whereas HD penalizes more the quad tree and the smoothing than
the removal.
To understand the different behavior of the two utility measures, consider moving distribution mass of amount
Δ𝑟 between cells. The KWD associated with this change is proportional to the minimum-cost way of reversing
it, ’costing’ 𝑑Δ𝑟 . On the other hand, HD and other bin-by-bin measures scale only with Δ𝑟 , independent of
distance. If SDC methods cause changes with wide variations in 𝑑, we expect no clear connection between the
two types of measures. If, however, 𝑑 is within predictable bounds, which is always the case when an SDC
mechanism acts locally, i.e. shifts mass exclusively (or preferably) within geographic neighborhood, we will
see a close association.
Consider, for instance, a single aggregation step of the quad tree method, described in 2.2. It consists of
redistributing mass between cells of a four-cell square. The KWD associated with reversing such a step is
proportional to 𝑑Δ𝑟 , where 𝑑 ∈ [1 ,

√
2] is tightly bounded. Such a small variation of 𝑑 can basically be treated

as noise, compared to the amount of mass shifted Δ𝑟 . A similar intuition applies for the smoothing approach:
Distribution mass is ’smeared’ out locally, so that shifting it back can be viewed as a localized transport problem,
where the weighted distance 𝑑 is again closely bounded. The bound depends on the kernel bandwidth and tail
of the kernel function. Typically we find that for both protection mechanisms (quad tree and smoothing) KWD
scales mostly with Δ𝑟 . Judging them via bin-by-bin utility measures versus the cross-bin KWD metric therefore
yields overall similar rankings of SDC methods.
With cell removal, on the other hand, distribution mass is deleted at various points of the map. The KWD
depends on how this missing mass is treated. Applying a constant cost 𝑐 per removed unit of mass implies total
KWD of 𝑐Δ𝑟 , which again would scale up with Δ𝑟 . The ranking of cell removal in comparison to other SDC
method depends then entirely on how we set 𝑐, i.e. how we judge the information loss from removing mass
compared to shifting it. If we consider instead virtually re-inserting the missing mass, KWD depends on the
distances of the virtual bin to the points of the map where mass was deleted. In that case, 𝑑 can vary widely and
we do not expect to see a correlation of bin-by-bin measures and KWD. For instance, in the results for Germany
(table 4), KWD preferred cell removal for the two more densely populated focus areas (Ruhr valley, Mainz &
Wiesbaden), but judged it second-worst for the two sparsely populated focus areas. In comparison, HD favored
removal throughout. Hence, we get a divergence between what difference utility metrics recommend.
Throughout, we find that KWD after smoothing is highest. This does not necessarily disqualify the smoothing
approach, however. To see why, consider the setting shown below. Let C be the ground truth; D1 is a situation
as would result from the quad tree method, D2 might result from smoothing.

C =

0 0 0 0
0 50 0 0
0 0 50 0
0 0 0 0

, D1 =

0 0 0 0
0 25 25 0
0 25 25 0
0 0 0 0

, D2 =

4 4 4 0
4 25 5 4
4 5 25 4
0 4 4 4

Upon visual inspection, we can claim that D2 preserves some qualitative properties of C better: The statement
’distribution mass is centered along the main diagonal’, for instance, is easily learned from D2, but hidden in
D1. The small masses in the former would easily be filtered out visually in a heat map, but they do influence
utility metrics. Specifically, for the given example we will find that 𝐾𝑊𝐷 (C,D1) < 𝐾𝑊𝐷 (C,D2). Generally
speaking, the more tail-heavy the kernel and the broader the bandwidth, the higher the measured utility loss
from smoothing as compared to, for instance, the quad tree method. Generally speaking, we do not find that our
utility metrics cover such qualitative aspects well.
Finally, some practical issues relating to spatial SDC can be learned from Fig.3, which maps a small part of
the German data set after protection by three different methods. Overlayed in grey are zones that count as
generally uninhabited: rivers and lakes as well as some forms of vegetation (forests, swamps, marshes). We
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Figure 3. Raster maps of a subset of German data after SDC methods have been applied;
shaded sections indicate forest and river areas.

can see that quad tree aggregation may intrude into these zones, populating previously unpopulated locations.
It can, for instance, aggregate cells from different sides of a river, creating artificial crossings, or make forest
areas seem more inhabited than they are. Smoothing, similarly, will often assign positive distribution mass to
these implausible locations. Whether this constitutes a problem of consistency for users will depend on the
planned application. A more serious question from the point of view of disclosure protection is, in how far
knowledge of implausible locations can be used to attack and partially reverse protection methods. In Fig.3 we
have used shape files of uninhabited areas, but the opposite is also feasible: many states offer Open Data terrain
models that explicitly demarcate settlement areas. Outside of these areas, valid person addresses may often be
implausible. Overlaying protected raster maps with such auxiliary geographic data could be used to revert some
of the changes made. These risks should be further investigated.

5 Conclusion

The experiment we carried out enabled us to test and compare several methods implemented in the sdcSpatial
package for protecting geo-referenced grid data against the risk of disclosure. The risk we measure here
is essentially a re-identification risk, considering a cell to be sensitive as soon as it doesn’t reach a certain
population threshold. The finer the geographical level of distribution, the more serious the risk. Other types of
risk could be investigated in the future. For example, the distribution of several maps on different categories of
the population could generate problems of disclosure of group attributes. Another very realistic risk is the risk
of differentiation with other maps displaying the same information on different zonings, such as administrative
zonings. As these are not, in general, an exact sum of tiles, differentiation cannot be reduced to a problem of
nested hierarchies. Costemalle (2019) provides an elegant way of detecting such problems. Future work could
involve integrating the suggested analysis of differentiation problems into risk measurement.
The three protection methods suggested by the sdcSpatial package (cell suppression, quad tree and smoothing)
all have advantages and disadvantages, as summarized in table 7. A suppressive method seems reasonable when
the number of sensitive cells is low, particularly in densely populated areas. The quad tree and smoothing
methods protect sensitive information by diluting it in the neighborhood. Despite the creation of implausible
locations that they both generate, if the zoom factor for the quad tree or the smoothing radius are not too large,
the usefulness of the outputs, qualitatively speaking, remains interesting. In addition, smoothing generates less
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Table 7. Advantages and disadvantages of SDC methods

SDC method advantages disadvantages
Cell removal straightforward and irreversible, hot

spots kept intact by design, no artifi-
cially inhabited cells

loses mass, low-density regions are
deleted from the map

Quadtree resulting cells assure 𝑘-anonymity,
small measured distance metrics

overly blocky structure, can artificially
enlarge hot spots, can result in implau-
sible locations

Smoothing secondary utility as a visualization aid,
diminishes spatial noise

may lose mass at edges, can result in
implausible locations, potential of re-
versal attacks

noisy maps that are easier to read. It is not so obvious for quad tree. In the future, we could also explore the
possibility of combining the different protection methods to increase the usefulness of the outputs.
The sdcSpatial::protect_smooth function displays a smoothing with a Gaussian kernel which doesn’t take
into account the borders or the presence of natural barriers. This could be implemented as in the btb package
which uses a quadratic kernel, which takes into account only points within the bandwidth. In addition, an
edge-correction (a Diggle correction) is implemented in the btb::btb_smooth function, to deal with edge-
effects (see Sémécurbe et al. (2018)). The method is then more conservative than the one implemented in the
sdcSpatial package and could lead to improve the utility of the resulting map.
In a future work, we could also try other SDC methods, beginning with some classical ones as swapping or the
cell key method for instance. Note that swapping and the cell key method could both be considered as ‘pre-map’
methods: they are applied to get safe data before using a method to plot the data on a map. The Quadtree and
Smoothing methods act on the unprotected data directly and supply protection when plotting the data on a map.
Moreover, swapping and the cell key method in their basic forms do not take the spatial characteristics into
account.
Any method of protection generates a loss of utility. It is therefore a question of choosing the method which, while
protecting sufficiently, will be able to preserve the most original information. However, geo-referenced data
cannot be assimilated to simple tables because the spatial distribution of the data is information as important
as the data themselves. In this work, we thus used two metrics, one appropriate for comparing tables (the
Hellinger distance), the other more suitable for comparing maps (the Kantorovic-Wasserstein distance). It was
the first opportunity for us to use the, latter which requires a pronounced attention to certain details such as the
mass-mismatching or the convexity of the zonings.
We could think about other utility metrics, especially from the ones that can grasp the spatial patterns information,
as the Moran’s I (Buron and Fontaine (2018)) or as the characteristics of cold and hot spots (de Wolf and de
Jonge (2017)).
An additional problem that should be addressed in future work is the relation between risk and utility measures
and the resolution of the map in question. The resolution of a map in some sense determines the level to
which a user could zoom in on the map. Obviously, the more zoomed-in a user is looking at the map, the
more detailed locations could be determined. Thus the identification risk becomes higher. Future work should
include recommendations on how to deal with this feature of being able to zoom in on the map, in relation to
the disclosure risk and the utility. See for some discussion in this direction e.g., de Wolf and de Jonge (2018).

14



References

Bassetti, F., S. Gualandi, and M. Veneroni (2020). On the computation of Kantorovich–Wasserstein distances
between two-dimensional histograms by uncapacitated minimum cost flows. SIAM Journal on Optimiza-
tion 30(3), 2441–2469.

Behnisch, M., G. Meinel, S. Tramsen, and M. Diesselmann (2013). Using quadtree representation in building
stock visualization and analysis. Erdkunde 67(2), 151–166.

Buron, M. and M. Fontaine (2018, Oct). Confidentiality of spatial data (Insee Methodes ed.)., Chapter 14, pp.
349–373. Paris.

Costemalle, V. (2019, Dec). Detecting geographical differencing problems in the context of spatial data
dissemination. Statistical Journal of the IAOS 35(4), 559–568.

de Jonge, E. and P.-P. de Wolf (2016). Spatial smoothing and statistical disclosure control. In J. Domingo-Ferrer
and M. Pejić-Bach (Eds.), Privacy in Statistical Databases. UNESCO Chair in Data Privacy International
Conference, PSD ’16, Dubrovnic, Croatia, September 14-16, Proceedings, Springer Lecture Notes in Com-
puter Science, LNCS 9867, pp. 107–117.

de Jonge, E. and P.-P. de Wolf (2022). sdcSpatial: Statistical Disclosure Control for Spatial Data. R package
version 0.5.2.

de Wolf, P.-P. and E. de Jonge (2017). Location related risk and utility. In UNECE - Expert Meeting on Statistical
Data Confidentiality.

de Wolf, P.-P. and E. de Jonge (2018). Safely plotting continuous variables on a map. In J. Domingo-Ferrer
and F. Montes (Eds.), Privacy in Statistical Databases. UNESCO Chair in Data Privacy International
Conference, PSD ’18, Valencia, Spain, September 26-28, Proceedings, Springer Lecture Notes in Computer
Science, LNCS 11126, pp. 347–359.

Gualandi, S. (2022). SpatialKWD: Spatial KWD for Large Spatial Maps. R package version 0.4.1.
INSPIRE (2014). Thematic Working Group Coordinate Reference Systems & Geographical Grid Systems,

D2.8.I.2 Data Specification on Geographical Grid Systems - Technical Guidelines. European Commission
Joint Research Centre.

Ricciato, F. (2023, Mar). Kantorovich-Wasserstein distances for spatial statistics: The Spatial-KWD library.
Presentation at the NTTS 2023 conference.

Ricciato, F. and A. Coluccia (2023). On the estimation of spatial density from mobile network operator data.
IEEE Transactions on Mobile Computing 22(6), 3541–3557.

Sémécurbe, F., L. Genebes, and A. Renaud (2018, Oct). Spatial Smoothing (Insee Methodes ed.)., Chapter 8,
pp. 205–229. Paris.

Shlomo, N. (2007, Aug). Statistical disclosure control methods for census frequency tables. International
Statistical Review 75(2), 199–217.

Suñé, E., C. Rovira, D. Ibáñez, and M. Farré (2017). Statistical disclosure control on visualising geocoded
population data using a structure in quadtrees. NTTS 2017.

Wand, M. and M. C. Jones (1994). Kernel smoothing. CRC Press.

15


	1. Introduction
	2. SDC Methods
	2.1. Cell removal
	2.2. Quad tree
	2.3. Smoothing

	3. Risk and Utility measures
	3.1. Risk assessment
	3.2. Utility assessment
	3.3. Focus areas

	4. Experiments
	4.1. Datasets
	4.2. Application
	4.3. Results
	4.4. Discussion

	5. Conclusion
	References

