Work of the Task Force on Measuring Hazardous Events and Disasters

Pilot set of core disaster-risk-related indicators

Angela Ferruzza (Italian National Institute of Statistics) and Michael Nagy (United Nations Economic Commission for Europe) on behalf of the Task Force
• Main objectives of the Task Force:
 1. Support the statistical operationalisation of terms, definitions and classifications used in disaster risk management (e.g. HIPs in collaboration with UK HSA)
 2. Development of a set of core statistics and indicators for “CES Region”
 3. Draft implementation guidelines
 4. Organisation of Expert Fora in collaboration with Inter-Agency and Expert Group on Disaster-related Statistics (IAEG-DRS, established by UNSC in 2019) and other partners

• Current TF members:
 • National experts of Italy (chair), Indonesia, Mexico, New Zealand, Spain, Türkiye and UK, as well as from ECLAC, ESCAP, ESA, IMF, OECD, UNDRR and WMO
The CES Recommendations:

- Complement the ESCAP DRSF
- Clarify the role of NSOs and NSS in providing information related to hazardous events and disasters
- Identify practical steps to better support disaster risk management efforts in coordination with national agencies responsible for disaster risk management
- Identify important follow-up activities
- Include 11 national examples (case studies)
Status of work:

• Endorsed as pilot set of core disaster-related indicators by CES in June 2023
• Next steps include pilot testing, development of implementation guidelines and identification of “core statistics”

Work builds upon other global and regional work:

• SDG and Sendai Framework indicators
• ESCAP Disaster-Related Statistics Framework (DRSF)
• CES Recommendations on the Role of Official Statistics in Measuring Hazardous Events and Disasters
• CES Set of Core Climate Change-related Statistics and Indicators
• Global set of Global Set of Climate Change Statistics and Indicators
Countries requested guidance to NSOs concerning the regular production of disaster-risk related information.

List of indicators does not constitute any obligation for their implementation.

Main benefits for countries by implementing these indicators:

- **Strengthen evidence** for disaster risk;
- **Regular production and dissemination** of disaster risk information by all national statistical systems;
- Inform about the state of disaster risk in an **internationally comparable** way;
- Support **monitoring and reporting against international policy agreements** (SDGs, Sendai framework, Paris agreement, etc.);
- Ensure **consistency and coherence of information** across administrative boundaries at the national and sub-national levels;
- Promote **data exchange and harmonization**, through interoperability and standardization;
- **Add value to existing statistics** to have regular statistics on disaster risk, support production of long-term data series;
- **Complement other recommended indicator sets** (e.g. CES core CC-related indicators).
Selection criteria

- Relevance
- Sound methodology
- Data availability
- Use indicators from existing global/regional indicator FWs

Conceptual foundation and selection of indicators

Disaster-related Statistics Framework (DRSF)

3 core elements of disaster-risk measurement:
- Exposure
- Vulnerability
- Coping capacity

Before hazards resulting in sudden disasters and slow processes resulting in disasters

Emergency

Direct impacts to environment and cultural heritage
(loss of critical ecosystems, water resources, cultural heritage zones or objects...)

During and after a disaster

Direct human impacts
(deaths or missing, injured or ill, displaced or evacuated, damages to dwellings, loss of jobs...)

Direct material impacts and economic loss
(on fixed assets/valuables, critical goods and services, critical infrastructures...)

Indirect impacts
(decline in economic value added as a consequence of direct economic loss and/or human and environment impacts)

Disaster Risk Reduction Activity
Indicator Framework
3 main dimensions

Types of hazards (UNDRR/ISC hazard classification)

Current focus is on:
- Main hazards driven by climate change
- Geohazards
- Environmental hazards
- Biological hazards
- Chemical and technological hazards

as far as monitoring systems are generally available

DRSF elements

- Frequency and dimension of hazardous events
- Disaster risk: Exposure, vulnerability, coping capacity
- Disaster-risk reduction activities
- Disaster impacts

Elements at risk

- People
- Housing
- Basic services
- Critical infrastructure
- Economic activity
- Ecosystems
- Food security and agriculture
- Water security
- Energy security
- Health care
- Cultural heritage
- Governance
1. Most NSOs see lots of benefits in having such a recommended list of indicators, some said they are overwhelmed by the abundance of various indicator sets out there (e.g. CES CC, global CC, SDGs, Sendai FW, ESCAP Basic Range of Disaster-related Statistics, …)

2. The right balances had to be found
Core indicators: Recommended for implementation by all countries. Prioritisation: Prevailing hazards; level of disaster risk for known hazards; Capacity to produce the underlying statistics in the short-, mid- and long-term.

- Tier 1: Indicator is conceptually clear, an internationally established methodology and standards are available, and data are regularly produced by at least 50 per cent of countries, for every region where the indicator is relevant.
- Tier 2: Indicator is conceptually clear, an internationally established methodology and standards are available, but data are not regularly produced by countries.
- Tier 3: Internationally established methodology or standards are not yet available, but methodology/standards are being (or will be) developed or tested.

Complementary indicators: accompany or complement the message conveyed by “core” indicators, by providing additional detail (sub-national detail, sectoral detail) or focus, or by covering additional aspects.
Presentation of the indicators and their main characteristics

<table>
<thead>
<tr>
<th>ID</th>
<th>Indicator</th>
<th>Elements at risk</th>
<th>Comments</th>
<th>Tier</th>
<th>Methodology</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Proportion of population without quality access to electricity</td>
<td>PHBI</td>
<td>A relevant indicator, but internationally it still needs to be defined what "quality access" means from a methodological and measurement point of view.</td>
<td>3</td>
<td>For example, Spain’s Red Electrica measures "non-availability rate" (percentage of total time)</td>
<td>TF</td>
</tr>
<tr>
<td>31</td>
<td>Proportion of world heritage sites without an emergency preparedness plan</td>
<td>PHBI</td>
<td>Countries have the duty to supervise and approve emergency preparedness plans; see also UNESCO database: https://whc.unesco.org/en/list/</td>
<td>2</td>
<td>UNESCO: Emergency preparedness plans: https://whc.unesco.org/archive/2007/whc07-31com-72e.pdf</td>
<td>TF</td>
</tr>
<tr>
<td>36</td>
<td>Proportion of land that is degraded over total land area (SDG 15.3.1)</td>
<td>PHBI</td>
<td>Possible proxy indicator: Change of land area affected by soil erosion (global CC set indicator 61); this is an indicator that can also be used to measure impact</td>
<td>1</td>
<td>SDG and global CC: https://unstats.un.org/sdgs/metadata/ and https://unstats.un.org/unsd/envstats/climatechange.csh.html</td>
<td>SDG 15.3.1, CC 71</td>
</tr>
</tbody>
</table>

Coping capacity

<table>
<thead>
<tr>
<th>ID</th>
<th>Indicator</th>
<th>Elements at risk</th>
<th>Comments</th>
<th>Tier</th>
<th>Methodology</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>Proportion of agricultural area under productive and sustainable agriculture (SDG 2.4.1)</td>
<td>PHBI</td>
<td></td>
<td>1</td>
<td>SDG and global CC: http://unstats.un.org/sdgs/metadata/ and https://unstats.un.org/unsd/envstats/climatechange.csh.html</td>
<td>SDG 2.4.1, CC 148</td>
</tr>
<tr>
<td>38</td>
<td>International Health Regulations (IHR) capacity and health emergency preparedness (SDG 3.d.1)</td>
<td>PHBI</td>
<td></td>
<td>1</td>
<td>SDG: https://unstats.un.org/sdgs/metadata/</td>
<td>SDG 3.d.1</td>
</tr>
</tbody>
</table>

Number of people per 100,000 that are
Selected core indicators (53 in total)

Some examples

Frequency and dimension of hazardous events (3)
- Proportion of hazardous events with deaths per year (per type of hazard).

Exposure (6)
- % of population living in hazard-prone areas in relation to total population
- % of farmland in hazard-prone areas in relation to total farmland

Vulnerability (6)
- % of population living below the national poverty line, by sex and age (SDG 1.1.1)
- % of world heritage sites without an emergency preparedness plan

Coping capacity (12)
- % of agricultural area under productive and sustainable agriculture (SDG 2.4.1)
- Health worker density (SDG 3.c.1)

Direct impacts (20)
- Number of disasters (per hazard type) declared by government per year
- Direct economic loss attributed to disasters in relation to GDP (SDG 1.5.2, SF C-1))

Indirect impacts

Research item

Disaster-risk-reduction activities (6)
- Proportion of government expenditure on DRR in relation to GDP
Continuation of collaboration with UK HSA, UNDRR and other partners reviewing the “Hazard Information Profiles” (HIPs)

Identification of core statistics, further test and develop core indicators

Supporting countries in implementing the indicators

Continuous exchange of knowledge and experience (e.g. Expert Fora)

Implementation guidelines, including a linking of Climate Change Adaptation with Disaster Risk Reduction – see some of the conceptual links at the next slide referring to “Promoting synergy and alignment: between Climate Change Adaptation and Disaster Risk Reduction in the context of National Adaptation Plans” (UNDRR, 2021)
Differences and commonalities between CCA and DRR: Hazards

Figure 1. Common and uncommon hazards that are the focus of CCA and DRR

Climate Change Adaptation Focus

Disaster Risk Reduction Focus

THE SLOW ONSET EVENTS
- Desertification
- Loss of biodiversity
- Ocean acidification
- Increasing temperatures
- Sea level rise
- Salinization
- Land and forest degradation
- Glacial retreat and related impacts

INTENSIVE & EXTENSIVE NATURAL & MAN-MADE EVENTS
- Hydrological
- Meteorological
- Climatological
- Biological
- Technological

Increase in Frequency & Intensity of Climate Sensitive Events

Hydrological
Meteorological
Climatological
Biological

1. As defined by COP decision 1/CP.16
2. As defined by the Sendai Framework for DRR

© UNDRR – United Nations Office for Disaster Risk Reduction
Thank you very much for your attention!

Angela Ferruzza (Italian National Institute of Statistics)

Michael Nagy (UNECE)