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 I. Introduction 

1. Technologies that are driving digitalization of the utility sector include integrated 
energy systems via distributed energy generation and consumption in the form of distributed 
solar photovoltaics (PV) and wind, utility-scale energy generation and storage, electric 
vehicles (EVs) and EV charging infrastructure, and the proliferation of smart grid with 
integrated advanced smart metering and other digitally controlled infrastructure and 
equipment. 

2. All these new technologies generate data. The proliferation of these digital 
technologies indicates there will be an increase in the amount of data to be collected, managed 
and analysed. This trend towards Big Data creates new opportunities for expansive and robust 
decision support systems. Big Data and Artificial Intelligence (AI), however, are still nascent 
research areas in the energy utility industry due to a lack of resources and expertise, whilst 
in other industries, such as online commerce and telecommunications, Big Data and AI 
research are developing as fast as the technology that supports them. To start the integration 
of AI in the energy sector, the algorithms need historic datasets, at least of a couple of years’ 
worth. Hence to make use of AI in the main, utilities need to start collecting data very early 
in the analysis process. 

3. As a result, new business models, new smart integrated energy systems, utility 
capabilities and consumer commitments and behaviour, especially on the demand side, will 
be enabled by these emerging technologies. The upcoming new integrated energy systems 
with abundance of renewable energy sources (RES) and variable generation will meet the 
supply-demand balance only by the help of Big Data and AI. With proper research, funding, 
and policy support, the utility industry can realize international collaboration and fair 
competition in this technology space. 

 II. Context 

4. Beginning when the term, ‘Business Intelligence’ was coined, the term Data Analytics 
grew out of that work and has been a core part of the last century of evolution in the 
computing field (see Annex). Today, the term Data Analytics is used in nearly every 
industrial and commercial sector. Several factors have led to the current focus on Data 
Analytics in the energy sector. The declining costs of information and communications 
technologies as well as advances in computing power all lead to an increasing availability of 
data and new opportunities for analysis (push factors). Additionally, the increasing transitory 
nature of renewable energy sources, and the dynamic nature of the offerings due to new actors 
constantly entering the market, increase the complexity and create new needs for Data 
Analytics (pull factors).1  

5. Since 2005, AI is a topic that has seen a significant publication growth across all topics 
including Energy and Computer Science, until 2010 when Data Analytics in the electricity 
sector as a field of research surpassed even the AI-related literature. 

6. AI has as many definitions as applications for its use. In this context, it is the leading 
technology that uses data analytics to automate the decision-making process around customer 
engagement strategies, optimize forecasts on energy use and energy flows for local 
generation and storage, enhance theft detection and fraud, trade commodities with higher 
prediction accuracy, and efficiently manage and secure the energy grid against cyberattacks 
before they happen. 

7. An implementation of AI is Big Data analytics. This requires skills to curate, manage, 
and analyze the data. The role of a Big Data analyst typically goes further than those of 
traditional business intelligence analysts. In this context, Big Data Analytics is the 
examination of a set of data using algorithms and other sophisticated modelling and statical 
analysis techniques to produce actionable insights from this data. A related term ‘advanced 

  
 1 Frederik vom Scheidt and others, “Data analytics in the electricity sector – A quantitative and qualitative literature review”, Energy 

and AI, Vol. 1 (2020).  
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analytics’ is often described as the use of predictive and prescriptive approaches (sometimes 
also referred to as AI) to advance those insights into action. The use of advanced analytics in 
the context of this document is around the measurement and management of grid events and 
customer demand. However, it is interesting to note that advanced analytics used in corporate 
settings can provide a return between 8 and 9 per cent reduction in operating costs (aspects 
of people analytics such as improvements in work-related accident investigations, 
management and prevention, recruitment, training, performance management, and employee 
retention). 

8. As the capabilities of computers and computing power have grown, the amount of 
data collected, stored, and processed on a daily basis has increased. The growth of data 
centres, advent of the internet (and the world-wide-web) means that 2.5 quintillion bytes (2.5 
trillion gigabytes, GB) of data are created every day. 

9. Although the scientific community has no standard definition for Big Data, indeed, 
there are between 3 and 10 characteristics. The term Big Data is not only about the volume 
of data, but also refers to the high speed of transmission and the wide variety of information 
that is difficult to collect, store and process using the available classical technologies. In this 
context, the term ‘Big Data’ is defined as extremely large, heterogenous data sets from a 
variety of new data sources that traditional data processing software cannot handle on a 
timely (near real-time) basis. 

 III. Identified challenges 

 A. Data sharing and democratization of data 

10. Being connected online is increasingly becoming a daily necessity. Not only for the 
convenience, but also for access to necessary data and information needed to progress 
business ambitions. Connectivity, as a technology, is only the starting point, and in worse-
case situations may exacerbate existing barriers or create new ones. 

11. Data sharing and democratization of data are fundamental to the concept of digital 
inclusion that is defined as “equitable, meaningful, and safe access to use, lead, and design 
of digital technologies, services, and associated opportunities for everyone, everywhere”.2 In 
order for people to embrace new technologies and get the full benefit of them, these 
technologies, and their associated data sets, need to be useful and authentic. 

12. For data to be made widely available it must be shared amongst many stakeholders, 
including those at the margins of an industry or society. Issues of cybersecurity, 
confidentiality, ownership, and privacy concerns need to be resolved for this to be realized. 
Translations between countries and regions are also an issue, namely language relevance. It 
is worth noting that access to training for the necessary digitalization skills is closely related 
to the proliferation of the local language on the world-wide-web. The main benefactor of 
these cross-cutting skills are the utilities and energy providers, whether or not the energy 
provider is the generator or the owner of the grid asset. 

13. Timely and complete access of relevant consumption and customer data is a challenge 
not yet resolved, especially in areas where digitalization is declared as ‘the next engine of 
growth’. The economies of Central and European countries are good examples where 
digitalization (and data sharing) can make global-level impacts, and indeed with the 2016 
actualization of the European General Data Protection Regulation (GDPR) there are specific 
guidelines for how to handle various types of data. Yet, without greater cooperation and 
policy coordination amongst regions, securing and realizing the full benefits of digitalization 
and Big Data is still only an ambition. 

14. Starting with the understanding that ‘Democratization of Data’ is the ongoing process 
of enabling all stakeholders, regardless of their level of technical knowledge, to work with 

  
 2 See: https://www.un.org/techenvoy/sites/www.un.org.techenvoy/files/general/Definition_Digital-Inclusion.pdf (accessed 7 May 

2023).  

https://www.un.org/techenvoy/sites/www.un.org.techenvoy/files/general/Definition_Digital-Inclusion.pdf
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data effectively, and to make informed decisions based on that data, there are still challenges 
that require deliberate consideration. 

Data curation 

15. Data curation is the process of collecting, organizing, characterizing, cleaning, 
enhancing, optimizing, and preserving data. Data that is optimized for analytics use, needs a 
structure which focuses on leveragability of that data and the algorithms.  

16. As one of the most prominent Internet-of-Things (IoT) applications for utilities, 
Advanced Metering Infrastructure (AMI) provide benefits to utilities in both operational- and 
customer-focused areas. Even during the COVID-19 pandemic, global deployment of AMI 
systems and digital meters has continued and even increased. The number of installed meters 
is expected to exceed 227 million units in 2026 in the European Union (from 150 million 
units in 2020) and yearly shipments of smart electricity meters in North America will grow 
from 8.8 million units in 2019 to 19.9 million units in 2024.3 The penetration of smart meters 
in Asia-Pacific stood at 69 per cent in 2019 and is expected to grow to 82 per cent in 2025. 
The 10 fastest growing markets during 2020-2026 will all be in Central, Eastern and South-
Eastern Europe.4 

17. Smart meter deployments are not restricted to electricity, however. For example: 

(a) Regions that experience high water stress need innovative ways to manage and 
control water usage.5 It is argued that 700 million water smart meters connections are 
expected by 2030, up from 196 million as at the end of 2021. Geographies with the largest 
expected deployments by 2030 include China (31 per cent of total share), North America (29 
per cent) and Europe (28 per cent);6 

(b) Smart gas meter deployments are also increasing as connection and 
connectivity technologies improve across commodities, as well as to support governmental 
policies to build infrastructure for the efficient distribution and use of both residential and 
industrial natural gas. Providing different readings than their water and electric counterparts, 
natural gas meters provide pressure, volume, and temperature of gas giving another 
perspective of usage within the connected premise. Common to the other commodities, 
natural gas meters can give readings on unexpected meter events, which can be correlated 
with the other commodity meter readings to give a holistic view of usage and status of the 
premise (and potentially for customer health and safety);7 

(c) Connected technologies of phasor measurement units (PMUs), supervisory 
control and data acquisition (SCADA) systems concurrent with AMI are core enabling 
technologies for the smart grid and provide invaluable meta-data (‘data-about-the-data’). 
New connectivity technologies, including 5G massive Machine-Type Communications 
(mMTC), non-mMTC Low Power Wide Area (LPWA) technologies, and 4G Cellular are 
expected to replace RF mesh networks, the current primary communication technology. 

18. Deployment of these systems means that utilities can harness the power of remote 
metering for connection and disconnection services, outage avoidance, and energy usage 
monitoring with a highly granular view on grid infrastructure and asset status and operations. 
Whilst installation of these systems can have relatively low initial costs, there are high 
maintenance costs; not the least of which are the properly skilled (experience) and trained 
(education) personnel. 

19. The sheer volume of data created by these smart meters (and other IoT devices) creates 
an expanded attack surface that is increasingly challenging to monitor and secure. As an 
example, personally identifiable information (PII) is defined as “Any representation of 
information that permits the identify of an individual to whom the information applies to be 

  
 3 Nicholas Nhede, “Smart meter penetration in North America will reach 81% by 2024”, Smart Energy International, 5 July 2019.  
 4 Berg Insight AB, “Smart Metering in Europe - 17th Edition”, October 2021.  
 5 World Resources Institute, “17 Countries, Home to One-Quarter of The World’s Population, Face Extremely High Water Stress”, 6 

August 2019.  
 6 Transforma Insights, “Water Smart Meters: 700 million connections by 2030 to solve issues related to water scarcity and loss”, 17 

August 2022.  
 7 Reports and Data, “Smart Gas Meter Market […] Forecast to 2028”, July 2023.  
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reasonably inferred by either direct or indirect means.”8 Whilst there is agreement across the 
industry on the general definition of PII, there are a variety of ways to secure, handle and use 
PII. Today’s customers are keenly aware of the importance of data privacy and the need for 
personal protection as they move closer to their role in the transformation of the smart grid. 
Motivated by the need for public protection, multiple privacy regulations have recently been 
enacted, including GDPR and the California Consumer Protection Act (CCPA). These 
actions join longstanding data security provisions from other sectors such as health, finance 
and commerce. 

20. In addition, data that organizations gather, process, and store as part of routine 
business operations but do not use for other purposes, also referred to as ‘dark data’,9 
represents an untapped potential for businesses. By applying the principles of making data 
findable, accessible, interoperable, and reusable (FAIR principles)10 into the data curation 
practice, organizations can turn dark data into valuable assets that could be used to enhance 
grid efficiency and improve forecasting of energy supply and demand. 

21. Within the context of energy customer demand analytics, customer segmentation, 
energy clustering and other demand-profiling efforts, analytics models require as much 
information as possible for discernment within the confusion matrix. The challenge remains 
on how customer analytics can be truly actionable if information is limited due to regulatory 
constraints over potentially sensitive data. As the energy sector moves along its digitalization 
trajectory, a balance needs to be struck between access to the necessary data for identifying 
and discerning energy demand needs across various demographic segments, and the privacy 
of data required to keep sensitive information from going public. 

Data availability 

22. When it comes to the utility sector, data availability refers to the process where utility 
companies (both distribution systems operators and supply companies, in geographies with 
unbundled services) and their users have continuous, secure, and readily usable data, 
associated with their electricity or energy use. Whilst the energy sector has had a high inertia 
in adopting digital technologies, as well as in harvesting and managing the data output, data 
availability is relatively poor. In other words, although new power plants built on the 
principles from digitalization guarantee greater efficiency and higher availability of services, 
and with the rise of digital twins which can help with modelling, forecasting, and testing for 
optimal performance, there is still a significant lack in cross-discipline and cross-sectoral data 
access. 

23. If Big Data is not readily available, and not accompanied by power system data, the 
opportunity for advanced data analytics is dramatically reduced and often made infeasible. A 
variety of meter data management vendors exist as do customer-oriented usage data 
technologies. Often these systems are incompatible due to proprietary software and data 
formats. 

24. The FAIR Guiding principles for scientific data management and stewardship intend 
to provide guidelines to improve the machine-actionability of data for increasing reuse and 
useability of data and to deal with increasing attributes of data volume, velocity, and 
variability. 

Data integration and smart energy management 

25. When data is created, collected, and curated it generates a history or a provenance. 
Data provenance describes its origin, how that dataset came to be, what operations were 
performed on it, who performed them, when they were performed, and why those operations 
were performed.  

  
 8 NIST Special Publication 800-79-2, “Guidelines for the Authorization of Personal Identity Verification Card Issuers (PCI) and 

Derived PIV Credential Issuers (DPCI)”, July 2015.  
 9 Gartner, “Dark Data”, Information Technology Glossary. Available at: https://www.gartner.com/en/information-

technology/glossary/dark-data (accessed on 27 May 2023).  
 10 GO FAIR Initiative. Available at: https://www.go-fair.org/fair-principles/ (accessed 29 May 2023).  

https://www.gartner.com/en/information-technology/glossary/dark-data
https://www.gartner.com/en/information-technology/glossary/dark-data
https://www.go-fair.org/fair-principles/
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26. As data management systems and technologies are deployed heterogeneously, on a 
time-forward schedule and with different software architectures, data integration between 
energy systems is often constrained. Often it is due to problems of provenance. 

27. Additionally, utility companies are still using outdated hardware and software that are 
often functioning on the edge of obsolescence. That leaves older technologies isolated from 
new platforms, as they are unable to interact with new generation of hardware and software. 
The utility sector, in particular, faces these issues, as the investments in digitalization are 
mainly direct toward new grid systems and technologies (e.g., poles, cables, transformers, 
PMUs), rather than upgrading older data management systems. 

28. Looking deeper at the technology, integrated data platforms must support decision-
making in a hybrid environment. This is the one in which there is integration with the 
applications that reside internal to the organization as well as potentially working with public 
cloud environments. The data lifecycle is complex and diverse, starting at the point of 
collection and continuing through to its end-use consumer. These aspects of hybridization 
and governance require a thoughtful, appropriately implemented, and unified data 
management solution. 

29. Smart energy management systems combine end-use devices, distributed energy 
resources and advance control and communication systems with standardized data 
management models. Setting up data architectures to optimize systems integration and 
analysis is an on-going challenge. Innovative approaches towards Big Data analytics and AI 
as an organic process within the smart energy management systems are still needed to ensure 
future proofing of systems and robust data integration. 

30. When considering the potential drivers of data integration, for the utility sector these 
use cases can range from failure probability modelling to enhancing customer experience. 
Whilst the various operational and customer-oriented use cases have their unique challenges, 
having a standardized data architecture and data management processes which are optimized 
for analytics can expedite breakthroughs on cutting-edge solutions.11  

31. Several standardized data models are available as reference: 

(a) In the United States, the Electric Power Research Institute (EPRI) published a 
utility-centric synthesized framework for large organization data management assessment. 
The purpose of this framework is for senior management to holistically evaluate the people, 
processes and technologies in their organizations that support data management and data 
analytics;12 

(b) The Common Information Model (CIM), developed and maintained by DMTF 
(formerly known as the Distributed Management Task Force13), is an international standard 
schema that provides a common way to represent computational and networking elements in 
a system and their relationships to other systems and elements, a large and robust framework 
for data and equipment communications management. The information model, the use of 
which requires a cross-disciplined set of skills and an extensive experience, defines and 
organizes common and consistent semantics for equipment and services. This is done through 
object-oriented class abstractions, inheritance, and connection associations. Management of 
services such as fault diagnostics, system configuration, accountancy, performance, and 
security are provided by the CIM model. Access to the standards documents, binary libraries 
for object class definitions and relationship hierarchies are available through membership. 

 B. Utility analytics sector skills availability 

32. Within the context of a distribution network, the data is generated and collected from 
AMI and smart meters, weather stations, SCADA systems, and transportation (for example, 

  
 11 Brad Gall, Chad Tucker, Beth Massey, “Shared Services Common Data Model to Deliver Advanced Analytics”, Proceedings of 

2022 IEEE International Smart Cities Conference (Pafos, Cyprus), 2022, pp. 1-5. 
 12 Electric Power Research Institute, “Data Governance and Utility Analytics Best Practices”, 30 April 2014. 
 13 DMTF, “Common Information Model”, https://www.dmtf.org/standards/cim (accessed on 23 May 2023).  

https://www.dmtf.org/standards/cim
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EV charging) systems. For each of these types of systems, there are a plethora of vendors to 
choose from, each with their own proprietary method to store and share data.  

33. High resolution data provided by technologies such as AMI meters is determined by 
the ‘flags’ selected within the meter. One might believe it is important to collect as much data 
as possible. However, it is more valuable to collect the interval data with the most built-in 
information. For example, smart meters report voltage readings which can also give 
information about the health and loading of the associated transformer. Vendor depending, 
the number of chosen flags in the meter can increase the amount of data collected and 
subsequent costs to store. The cost-benefit analysis for how much and which data types 
contain the most value, is a worthwhile effort that needs to be developed early in the process. 
Such a cost-benefit analysis should also consider the lack of standardization among vendors, 
the skills needed to navigate the various and heterogenous systems from which the data is 
collected, the environments required to optimally format and manage the data needed for 
analytics, and allow for the additional work required for environmental setup and 
commissioning. 

34. Many utilities do not have their own analytics department, and there is a growing need 
to collaborate among utility departments to determine whether algorithms are reaching the 
right conclusions. There is a gap between utilities operations personnel that know the day-to-
day business and data analysts that know the algorithms. All utility segments would benefit 
from working together so that redundancy in algorithms and datasets is limited. 

35. It is noted that, “Remarkably little is settled around the wise use of technology. For 
example, for products that can be controlled by their manufacturer – like smart home devices 
and new cards – [it is] unclear what the manufacturer’s responsibilities are.”14 Expertise and 
supporting policies around concerns on privacy and responsibility to the consumer for device 
failure whether malicious or not and whether fatal or not are currently lacking in both design 
and implementation.  

36. Challenges around the upskilling of the current workforce to effectively use tools and 
techniques currently available and drive improvements in education require further research 
into other key areas including data translation into operational needs, data monetization and 
cybersecurity. 

Data translation into operational needs 

37. Data translation can be defined as the process of converting volumes of data from one 
syntax to another and performing value lookups or substitutions from the data during the 
process. Translation can include data validation as well. One example of data translation is 
to convert vendor specific time series data or even Geographic Information System (GIS) 
data and customer flat files while performing data validation on the source data. Translating 
data into operational ambitions requires a strategic vision on which objectives can be 
established as measurable objectives can create actionable insights. 

38. In the utility sector, organizations working in traditional energy generation (i.e., fossil-
based) have to adjust their cost margins by improving the efficiency of the plants. Some 
studies project that proper use of advanced analytics can bring about savings of between 5 
and 7.5 per cent.15 This can be due to an improvement in uptime, predictive maintenance 
based on failure rate forecasting, and optimization of fuel consumption coupled with a focus 
on performance monitoring to reduce (or eliminate) over-production. 

39. It was estimated in 2018, that data-directed technologies can drive up operations and 
maintenance cost savings to more than 12 per cent. The costs of sensors and data capture 
devices have significantly decreased as much as one-tenth the price from ten years’ ago. As 
more communication improvements such as 5G or the future 6G technologies continue to 
boost transmission speeds of 1,000 Gbps for 6G compared to the 600 Mbps of 5G, data from 
IoT solutions can be analyzed, and decision-making support given in real-time. 

  
 14 Jonathan L. Zittrain, The Future of the Internet -- And How to Stop It (Yale University Press & Penguin UK, 2008). 
 15 McKinsey & Company, “The Digital Utility: New challenges, capabilities and opportunities”, June 2018.  
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40. The dynamic nature of this level of data analysis brings a step change to the definition 
of strategic use cases. Use cases such as failure probability monitoring, outage detection and 
prediction, smart grid security and theft detection, transactive energy management, 
preventive maintenance for equipment, optimizing asset performance, demand response 
management, real-time customer rates and billing, and enhanced customer experience seem 
to rise to top of the list among utilities that have advanced their high-resolution data capture 
programmes. 

41. The challenge remains on whether a utility can take advantage of the data collected to 
formulate a strategy around known (or unknown) needs. 

Data monetization 

42. To a large extent, data monetization is the ideal goal in achieving widespread 
deployment of data analytics. Utilities and energy service unknowingly possess a wealth of 
extensive and very valuable customer and operational datasets of information with more data 
becoming increasingly available through the deployment of smart devices.  

43. Data monetization is the stage of data maturity where utilities and other energy 
supplier companies leverage Big Data for new revenue opportunities. For example, 
leveraging actionable insights from user data and customer behaviours can drive a utility to 
upscale their customer relationship and rethink their customer experience. Using methods 
such as 360-degree customer profiles can address the increase in churn rates, which is as 
much as 25% in some markets.16 Solutions such as automated voice analytics in call centers, 
integrated with communications systems (e.g., mobile applications in the field) and corporate 
websites, along with consumption analysis and dynamic rate pricing, will allow companies 
to meet their customers where they are. This holistic level of integration increases lifetime 
value for customers and reduces churn for the utility. 

44. Especially for those utilities that are distribution-only providers, increasing the 
efficiency of their retail portfolio through better assessment of customer creditworthiness and 
consumption variation can help to minimize defaults and avoid fraud. Studies show that the 
impact of an integrated strategy for customer analytics increases the profit margins of 
companies by 5-10 per cent in addition to increasing customer satisfaction. 

45. Additionally, there is a significant quantity of data gathered for regular business 
activities which is not used for any other reason; this dark data could be important to other 
businesses and could be a new revenue source. Using insights based on experiences, utilities 
can provide new revenue generating products and services and enhance product and 
operational performance to create a more compelling and sustained customer relationship. 

Cybersecurity and grid resiliency 

46. As the utility sector is gradually increasing its level of digitalization, increasing risks 
related to cybersecurity emerge, both operationally and commercially. In this context and 
considering high risks of cyberwarfare, utility companies must set proper prevention and 
mitigation strategies, while also developing business continuity plans after cybersecurity 
breaches. 

47. It was argued that “by the end of 2023, modern privacy laws will cover the personal 
information of 75 [per cent] of the world’s population.”17 As modern-day customers become 
more knowledgeable about their role in the digital grid journey, they will want to know what 
kind of data is being collected and the intended (and actual) uses. Utilities and energy 
providers, especially those that cover multiple geopolitical boundaries in various 
jurisdictions, will need a strategic customer education programme focused on cybersecurity 
and how the applications are fit for the local jurisdiction. 

48. The same analysis concludes that by 2024, “organizations that adopt a cybersecurity 
mesh architecture will reduce the financial impact of security incidents by an average of 90 
[per cent].” This type of architecture can be extended to cover identities outside the traditional 

  
 16 Pablo Boixeda, “Optimizing the Energy Sector with Data Analytics”, Cloudera, 20 December 2022.  
 17 Gartner, “The Top 8 Cybersecurity Predictions for 2021-2022”, 20 October 2021.  
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security perimeter. The increase of remote working across organizations will drive adoption 
of these architectures in the coming years. 

49. It is also argued in the report that by 2025, ever-increasing percentages of 
organizations will adopt strategies around: cybersecurity risk policies for third-party 
transactions (60 per cent), legislation for regulating ransomware negotiations (30 per cent; 
up from 1 per cent in 2021), a dedicated cybersecurity committee representative on the board 
of directors (40 per cent), and create a culture of organizational resilience to survive 
coincident threats from cybercrime, severe weather, civil unrest and political instability (70 
per cent). 

50. Further analysis and additional information on impacts of cybersecurity to the digital 
landscape of the energy sector, is contained in the document “Key considerations and 
solutions to ensure cyber resiliency in the smart integrated energy systems” 
(ECE/ENERGY/GE.6/2023/3−ECE/ENERGY/GE.5/2023/3). 

 C. Big Data analytics modelling research and development efforts 

51. Access to on-going research and application efforts for utility-scale data analytics in 
the utility industry is a key pillar to progressing Big Data analytics and indeed digitalization 
of the energy sector as a whole. At the same time, access to and use of the results from the 
research efforts of responsible national bodies, is often difficult. 

52. Data maturity is an important concept for energy providers. As utilities find that data 
is evermore central to all enterprise strategies, helping to drive innovation, and continues to 
be integrated across departments, it is a necessary priority to develop and implement a 
strategy for a data maturity roadmap. In this way utilities can drive optimization in their 
internal processes as well as innovate over and provide reliable services for their customers. 

53. The below Table shows a maturity curve of data capabilities. Progressing along the 
levels of this curve, an organization increases its data management, algorithm development 
and delivery capabilities. Studies show that companies with mature data management and 
robust (i.e., repeatable, verifiable) analytics processes can boost their profitability by an 
average of 12.5 per cent of total gross profit.18 Advancing up the levels of the curve, 
demonstrates a maturity in an organizations’ data analytics strategy and implementation. As 
more investments are made into the analytics capabilities, the faster an organization can 
progress along this curve. Studies show that even conservative investments yield good 
movement and most utilities and energy provider organizations transition between phases 
fairly quickly even with modest investments in their data analytics.19 

Table 
Data and analytics maturity 

Level Data and analytics 
maturity 

Analytics capability Commentary 

1 
Much data and 
too many data 
warehouses 

Reactive reporting – concerned 
with current issues 
• Transactional lists and 

printouts 
• Historical and cost 

monitoring focus  
• No integration of data or 

operational applications 
• Data is scattered in 

heterogenous storage 
platforms 

An organization has made 
some investment in analytics 
infrastructure; however, it 
may be outdated or there was 
no data management strategy 
to start from. The result is 
that data is managed in an ad 
hoc way and decision-making 
is often reactive based on 
today’s priority rather than 
based on empirical value-
driven evidence. 

2 

Basic 
reporting and 
minimal 
automation 

  
 18 Richard Carufel, “What’s your data really worth? It depends on your data maturity level”, Agility PR Solutions, 26 March 2020.  
 19 Electricity Advisory Committee, “Big Data Analytics: Recommendations for the U.S. Department of Energy”, February 2021.  
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Level Data and analytics 
maturity 

Analytics capability Commentary 

3 

Business 
intelligence 
with statistical 
analysis 

Planned analysis – short-term 
planning 
• Diagnostic reporting 
• Data storage and access are 

automated 
• Cross-operational 

integration 
• Uneven analytics 

competencies 

A growing maturing within 
departments and across the 
organization, as operational 
planning turns more strategic 
and analytics competencies 
increase. 

4 
Predictive / 
prescriptive 
modelling 

Strategic analysis – consistent 
delivery 
• Departmental scorecards, 

dashboards 
• Maturing analytic capability 
• Consistent and effortless 

production 
• Insight to action 

5 
Model and 
process 
Optimization 

Process optimization – foresight 
• Actions based on future 

planning  
• Full integration and use of 

external data 
• Real-time analytics as a 

differentiator 
• Organizational scorecards, 

dashboards 
• Widespread analytic 

capability 

Processes across the 
organization are optimized 
and integrated. Decisions are 
based on future planning and 
deep insights from empirical 
and robust forecasting. Real-
time analytics using advanced 
capabilities are consistently 
and organically deployed, and 
organizational dashboards 
have been standardized, for 
example with agreed data-
oriented nomenclatures. 

54. Moving along the curve means that organizations need to change their paradigm for 
decision-making. This requires integrated thinking, cross-functional applications, and cross-
operational team collaboration.  

Big Data, advanced analytics model research, development, and deployment efforts, 
and outreach 

55. The declining costs of information and communication technology, as well as 
advances in computing power, lead to an increasing availability of data and new opportunities 
for its analysis. Data availability is about the timeliness and reliability of access to and use 
of relevant data. At the same time, the number of RES and other distributed energy resources 
continue to increase penetration into the grid globally, increasing complexity across the 
electricity system and create new needs for data analytics and optimized analytics models. 
Data and data analytics model availability typically have a time limit. 

56. Utilities must ensure that their analytics models follow the rules of validity, 
reproducibility, and transparency. Industry standards can offer an organized method for 
planning and implementing data mining initiatives, such as the Cross-industry standard 
process for data mining (CRISP-DM) framework, as described in the Figure below. It 
consists of phases for business comprehension, data comprehension, data preparation, 
modelling, evaluation, and deployment. Utilities should also think about combining machine 
learning and AI techniques to handle complicated, high-volume data on cloud-based 
platforms for scalability.  
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Figure 
CRISP-DM framework 

 
Source: adapted from https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview  

57. It is essential in today’s world of growing demand for highly skilled technical 
engineers, that businesses prioritize training and development of their current teams. 
Continuous training and skill development, focusing on a culture of data-driven decision-
making, hiring for a blend of technical (data science, machine learning, statistics) and sector-
specific (energy systems, regulation) expertise, and fostering collaboration and knowledge-
sharing among team members are key practices to building an effective in-house analytics 
team. 

58. Models that have the potential to benefit others, such as those that anticipate energy 
consumption, forecast load and the output of RES, or those that analyze grid stability, should 
be shared either open-source or for revenue reasons. In addition, there are numerous 
techniques, including regression, time-series analysis, machine learning (including neural 
networks), and simulation models, that could serve as the foundation for these models. Most 
importantly, though, is publicly accessible datasets and open-source software, which can 
promote standardization and transparency among various parties. Shared models, data 
science techniques, data and open-source software can significantly encourage greater use 
and collaboration. 

59. As research, development, and deployment in Big Data analytics in the energy sector 
is growing in breadth and diversity, it is essential to integrate and structure the fragmented 
body of scientific work. Currently, data analytics activities span the areas along the entire 
value chain, from generation and trading to transmission, distribution, and consumption. 
Activities also range over different applications such as forecasting or clustering using 
various approaches such as artificial neural networks and the establishment of regional 
innovation hubs that focus on specific technologies. 

60. Worldwide efforts are being made to create communities that share best practices for 
using advanced analytics models. For instance, the “Digital Europe Programme” of the 
European Commission highlights the necessity of creating high-impact projects using AI and 
data analytics. Similar to this, the United States Department of Energy launched the Grid 
Modernization Initiative to work on revolutionary reforms utilizing data analytics. In order 
to share information and promote innovation, governments are increasingly forming cross-
border collaborations regionally.  

61. The gathering of thorough, varied, and high-quality granular data from many sources, 
such as IoT devices, smart meters, weather stations, etc., is crucial to improving the accuracy 
of data analytics models. In addition, the incorporation of real-time data streams, the use of 
feature engineering strategies, and the application of sophisticated machine learning 
algorithms all have the potential to enhance model performance. 

62. The selection of demand-side analytics models frequently entails a trade-off between 
granularity and privacy, speed and accuracy, and complexity and interpretability. The 
accuracy, interpretability, and responsiveness of the results are all directly impacted by these 
compromises. For instance, a very complicated model could produce findings that are more 
accurate but may be more difficult to understand and take longer to run than a simpler model. 

Business 
understanding 

Modelling 

Data understanding 

Data preparation Evaluation 

Deployment 

https://www.ibm.com/docs/en/spss-modeler/saas?topic=dm-crisp-help-overview
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63. One key consideration is the existence of hidden biases which can lead to elements 
like skewed data, false assumptions, or biased algorithm design. These biases might result in 
unfair treatment, biased behavior, or misleading insights. This highlights the crucial need for 
effective data governance procedures, which also include rigorous data gathering, cleaning, 
auditing, and validation. 

64. While some types of biases can be reduced through automation, it is important to 
understand that algorithms themselves can contain and reinforce biases, especially if they are 
developed using biased data or deployed without enough control. Therefore, it is essential to 
have open and accountable methods which are included to the automation of any decision-
making processes. Algorithmic biases can be reduced by the use of explicable AI approaches 
and adherence to AI ethics principles. 

Example of advanced analytics and AI application for heat meter failure identification 

65. Whilst the synergy between Big Data and AI have not utilized its full potential, there 
are some pilot programmes that showcase best practices for advanced analytics and provide 
a pathway that others could follow. 

66. In the city of Vilnius, Lithuania the heat provider wanted to establish a programme 
that analyzed customer heat usage over time to identify anomalous readings which may 
indicate a malfunctioning heat meter. Statistically, 0.5 per cent of heat meters are identified 
as ‘broken’ and may send false interval readings. For a service territory of 100,000 customer, 
this amounts to 500 meters sending false readings. This can create erroneous calculations of 
actual demand which results in inaccurate billing. 

67. Using smart heat meters, interval data was collected over two heating seasons. 
Considering customer behaviour (based on past historical demand) and seasonality, a Big 
Data statistical analysis was performed to clean unreliable data and remove external factors 
such as outliers for off-season heating days and unseasonable temperatures, and to identify 
the parameters for a business-as-usual scenario. This training dataset was used to train an AI 
system and then used for utility billing purposes and to identify any heat meter failures. 

68. The AI system was tested on monthly heat demand data, the data was cleaned and 
updated to reflect the number of heating days and the outside temperature for the current 
month. An Interactive Actual Energy Consumption Map was created using the heat energy 
customer profiles, and then normalized for influencing factors such as season duration and 
temperature and apartment size. In this way, the AI system could compare all data for any 
customer of any year. 

69. The data were presented on a GIS map using a color range from green to red, and 
actual energy performance class from 1 to 10. This map was made publicly available to 
customers at the utility website, and allowed comparison of similar buildings, thus bringing 
sharp attention to buildings’ operation, maintenance, and facility management activities, in 
order to find and fix potential problems. This also supports the measurement and verification 
process for energy conservation measures such as insulation of buildings and their 
refurbishment, as customers can compare the actual energy consumption after buildings’ 
improvements.  

70. Although this approach is different from the mandatory Energy Performance Class A-
E, which shows only theoretical consumption data, it shows that without Big Data and AI 
analytics utilities will struggle to properly identify energy consumption issues to provide 
actual energy consumption information to their customers and make longer-term decisions 
for capital and operational expenditures on grid assets. 

 IV. Conclusions and policy recommendations 

71. Based on the discussions above, the following conclusions and policy 
recommendations are presented for consideration:  

(a) On data sharing and democratization of data: 

(i) Data curation: 
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• Need for clearly defined, easy to understand national and 
international standards for handling sensitive data 

• Need for cybersecurity and cyber-physical security standards and 
turnkey operations for residential data owners. 

(ii) Data availability: there is still a significant lack of access to cross-
discipline and cross-sectoral data. More research into applications of FAIR 
principles for data is needed, notably ‘dark data’; 

(iii) Data integration and smart energy management: 

• Need for systems integration to allow for expedited data integration 
from heterogenous systems 

• Need for unified data management standards 

• Need for standards and/or protocols for smart energy management 
architectures 

• Need for building strategic use cases 

• Need for easy-to-understand and quick-to-use data architectures that 
can be analytics- and utility-oriented. 

(b) On utility analytics sector skills availability: 

(i) Data translation into operational needs: 

• High-resolution data capture through the proliferation of sensors and 
smart devices, drive the need for advanced analytics 

• New skills are needed for the existing workforce and incoming new 
hires, to take advantage of greater computing power and robust data 
architectures for standardization of data sets across departments 

• Large-scale test beds are needed to evaluate various solutions with 
the continued proliferation of smart and connected IoT devices, 
adding to the education and skills concerns for utilities 

• Expertise and supporting policies around concerns on privacy and 
responsibility to the consumer are needed for both design and 
implementation 

• Challenges around the upskilling of the current workforce to more 
effectively use tools and techniques that are currently available and 
to drive improvements in education, require further research. 

(ii) Data monetization: 

• Dynamic rate pricing for increased customer value 

• Potential model of providing value to consumers in exchange for 
data. 

(iii) Cybersecurity and grid resiliency: utilities will need a strategic 
customer education programme focused on cybersecurity and how the 
applications are fit for the local jurisdiction. 

(c) On Big Data analytics and maturity: 

(i) Big Data, advanced analytics model research, development, and 
deployment efforts, and outreach: 

• The establishment of local and regional innovation hubs is needed to 
fully test and secure digital and data technologies 

• Education of energy communities’ stakeholders is necessary to help 
consumers understand and acquire agency for their role in the digital 
transition 
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• There needs to be greater actionable incentives for the energy sector 
stakeholders, specifically utilities and energy provider segments to 
care about leveraging Big Data 

• The use cases that justify large investments in data collection, 
management, analytics, and AI infrastructure need to be 
demonstrated to ensure clear returns on investments 

• The cost recovery model must be considered so that justifiable 
investments in data analytics can be considered as capital investments 
with clearly defined customer benefits. 

72. The Task Force on Digitalization in Energy further suggests the follow-on activities: 

(a) Investigate the above conclusions and carry out comprehensive work and 
deeper analysis of each, preferably in collaboration with the subsidiary bodies of the 
Committee on Sustainable Energy, which might accordingly extend the mandate of the Task 
Force on Digitalization in Energy; 

(b) Conduct focused research on funding models for those areas in greatest need 
of attention, such as: Big Data technology advancement (e.g., natural language processing, 
digital twin modelling, demand / load forecasting, optimized machine learning, progression 
of AI capabilities), grid resiliency, infrastructure investment (particularly as it relates to data 
access, storage, management, and real-time analytics), in accordance with the 2024-2025 
mandate of the Task Force on Digitalization in Energy. 
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Annex 

Table 
Evolution of data analytics 

Year Milestone event Description 

1865 Business 
Intelligence 
Term 

Richard Miller Devens uses the word 'business intelligence" in his Encyclopaedia 
of commercial and business stories. This is believed to be the first study of a 
company using data analysis for commercial goals. 

1928 Magnetic 
Storage 

Fritz Pfleumer, a German-Austrian engineer, invents a way of magnetically 
storing information on tape. His methods are still used today, with the vast bulk 
of digital data being stored magnetically on computer hard drives. 

1928 Data 
Processing 
Computers 

IBM introduced the 305 and 650 RAMAC (Random Access Memory 
Accounting) 'data processing computers' in 1956, which included the first-ever 
disk storage device. 

1965 First 
Government 
Data Centre 

The US government Intends to build the world's first data center, which will hold 
742 million tax records and 175 million fingerprint sets on magnetic tape. 

1989 “Big Data” 
Term 

The term ‘Big Data’ was first used in a magazine article by fiction novelist Erik 
Larson, who was remarking on advertisers' exploitation of data to target 
customers. 

1996 Digital 
Storage Cost-
Efficient 

According to RJT Morris and BJ Truskowski's 2003 book The Evolution or 
Storage Systems, digital storage is becoming less expensive than paper storage. 

1998 Next Wave of 
Infostress 

SGI Chief Scientist, John R. Mashey, gives a paper titled Big Data ... and the 
Next Wave of Infostress at a USENIX convention. 

2001 “3 V’s” Term Doug Laney defines the three -Vs' of Big Data: volume, velocity, and variety. 

2005 Web 2.0 This year marks the debut of Hadoop, an open-source Big Data platform 
presently developed by Apache. The user-generated web, known as Web 2.0, is 
developed the same year. 

2008 14.7 Exabyte 
of Fresh Data 

The world's servers handle 9.57 zenabytes (9.57 trillion gigabytes) of data every 
day, which is comparable to 12 gigabytes of data per person per day. This year, 
an estimated 14.7 exabyte of data is created. 

2009 CIO (Data 
Oriented 
Title) 

According to Gartner, the top priority for CIOs Is business intelligence. As 
businesses suffer economic instability and uncertainty as a result of the Great 
Recession, extracting value from data becomes critical. 

2011 Analytical 
Skills 
Scarcity 

There is a shortage of between 140,000 and 1190,000 professionals with 
profound analytical abilities, as well as 1.5 million analysts and managers who 
can make appropriate data-driven judgments. 

2012 Big Data 
Research and 
Development 

The Obama administration announces the Big Data Research and Development 
Initiative, which improves the ability to extract insights from data, accelerate the 
pace of science, technology, engineering, and mathematics (STEM). 

2014 Next Wave of 
Infostress 

In the United States, mobile devices outnumber desktop personal computers for 
the first time. Two years later, in 2016, the rest of the globe follows suit. 

2020 Edge 
Computing 

The next frontier for Big Data is edge computing, which refers to computation 
done near the source of data gathering, rather than in the cloud or a centralized 
data center. 
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