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Global Methane Budget suggests that annual global methane emissions are around 580 Mt. This includes emissions from natural sources (around 40%
of the total) and from human activity (around 60% of the total), also known as anthropogenic emissions. The largest anthropogenic source is agriculture,
responsible for around one quarter ol emissions, closely followed by the energy sector, which includes emissions from coal, oil, natural gas and
biofuels.
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2019 METHANE BUDGET OF THE WORLD
(Worden et al, 2022)
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Top: posterior methane emissions. Bottom: posterior
emissions uncertainty as calculated by the sgquare root
of the diagonal of the posterior covariance matrix.
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Emissions by sector for the top 10 emitters. AF represents agricultural and fires. FF
represents fossil fuels or coal, oil, and gas. Natural represents wetlands, agquatic sources,
and geological seeps. Bottom-up (BU) inventory estimates are shown as blue bars, and the
remote sensing/top-down (TD) estimates are shown as pink bars. The uncertainties in both
quantities are shown as black lines.

*Top FF emitting countries are shown in red star — author.



PRINCIPALS OF REMOTE SENSING
AND SAMPLE METHANE MONITORING
(S. Jongaramrungruang et al., 2021)
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A schematic for reflected sunlight from the Sun
through the atmosphere to a spectrometer in space.
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Advances in monitoring technologies, notably from satellites, have been a key to boosting our understanding of the level and nature of methane
emissions. Current satellites and data processing techniques can be used to detect and quantify total emissions from major leaks over a large area,
down to small leaks at the facility level. They also enable regional estimates of total methane emissions over longer periods of time.
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Detection of methane emissions from the Nord Stream leak Satellite-detected large leaks from fossil fuel operations, 2022
GHGSat (2022), Global emission monitoring.



Total Methane Column Concentration of China from 2003 to 2021
(Xu et al, 2023)
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METHANE EMISSIONS FROM URBAN AREAS
(de Foy et al, 2023)
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OPERATIONAL CH, MONITORING SATELLITES WITH PUBLIC DATA ACESS
(GEO, ClimateTRACE, WGIC, 2021, GHG Monitoring from Space: Amapping of capabilities across public, private, and hybrid satelite missions.)

COUNTRY/REGION, GHG MONITORED POTENTIAL POLICY-

ORGANIZATION; MISSION AND INSTRUMENT DIRECTLY RELEVANT APPLICATION DATA ACCESS

Mission Goal: To monitorand
analyze the chemical processes
that contral the distribution of

CSA oczone in the upper troposphers
4 == Seisat-1 S i (0. (0] (®)
5 MASA ¢ ] if okt Application: SciSat-1 can rreasure Open access
the vertical resolutions of all major
GHGs identified for manitaring
under the Parls Agreement.

Mission Goal: To perform
atmosphedic measuements with
high temporal (daily) and spatial
resolution that can be used for air

quality, cxone & LWV radiation, and
m;:r @ climate monitoring & forecasting, @ @ @
I arbit : Open acoeis
Application: The global monitering
of GHGs (ie, CH4) and their tracers

and aerceok mlevant o climate
forcing

Europe
§8a

Mission Goal: Acquire a wide mange
of land ocean, and atmospheric
rreasu e ments serving operational

services for nowcasting, weather
EUMETSAT m“"“ @ forecasting and climate. @ @ @

Inarbit Application: Profiles in middie Open access
atrmosphers for 002 CHy,
and M20 are derived from IASI
rmeasunerments.
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COUNTRY/REGION, GHG MONITORED POTENTIAL POLICY -
ORGANIZATION, MIS5ION AND INSTRUMENT DIRECTLY RELEVANT APPLICATION DATA ACCESS

MEsion Goal: To provide a
global observation capability.
monitoring of natural resources

and atrmosph eric characteristic,
PRISMA @ The specific areas of Interest to @
i ASI {HYC) be covered are Europe and the
In oriit Mediterranean region Open access
Application: Carbon cycle

rmonitaring and quantifying GHG
emissions from sources

Mission Goal & Application: To
JAXA GOSAT @ mionitor the global distribution of @
-i. MOE Japan (TANSO-FTS) GHGS (le, 002 and CH4) at a sub- @ @ @
MNIES Inarhit continental scale and werify the Ohpen access
reduction of GHG ermissons.

Mission Goal & Application; To
cantinue the manitoring record
JAXA GOSAT-2 started by GOSAT by measuring
;. MOE Japan (TAMNSO- the global distibution of GHGs e @ @
MNIES FTS2 I ot lie, CO2 and CH4) at a sub- upeh ACCBSE

continertal scale and verify the
reduction of GHG ermissons.

Mission Goal: A multl-disciplinany
studhy of Earth’s inte melated
processes and water oycle
limvoldng the atmosphere, ooeans,

lce, and land surface) and their
Aqua @ redationship to changes in the @
s NASA (AIRS) : Earth system,
Inarbit Application: AIRS measures CIPa Sone1a
CO2 and CH4 inthe rmiddle
tropoasphere allowing for the study
of the atmosphere’s response 1o
Increased GHGS



SCISAT-1 [+

SCISAT-1 is an atmospheric science mission from the Canadian Space Agency which launched on 13 August 2003 and remains operational.

Mission Farameters

Ortit Altrtude 650 km

Orbit Inclination RN

Orbit Type Circular high-inclination

Repeat Cycle Annual

ACE-FT5 Instrument Facameters

Parameter

Spectral Range

24-13.3 pm [or 750-4100 em-1)

Resalution

4-150 krn [ACE-FTS); 1-2 km [MAESTRO]

Swath Width

FOV 1.25 mrad

Spectral Resalution em-1

<0.028, 0.056, 0.11, 0.55

Sweep Duration

2,1,0501s

Spectral Stability [relative)

3 % 10-7 rms for 180 5

Moise Equivalent Radiance

<(.5% of the radiance of a blackbody at S800 K

Detectors

InSh, HgldTe

Detector Cooling

Passive cooling <100 K

FOV (Field of View]

1.25 mrad

« C @ oA ps. tabace scisat.ca/lewv
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ACE-FTS Level 2 Data, Version 5.1

INotices
?023-05-11: Data update to the end of April 2023 is complete.

For all questions and concerns please email mlecours@scisat.ca

Documentation

« ACE-FTS Data Usage and File Format Document [Updated: 2023-05-10]

« ACE Imager Data Usage and File Format Document [Updated: 2023-02-15]

« ACE-FTS Microwindow List and Spectroscopy Document [Updated: 2023-02-15]
« Occultations list: [TXT/CSY] [Updated: 2023-05-17)

FTS Level 2 Data

I description of the netCDF and ASCII files is provided in the ACE-FTS Data Usage and File Format Document. These
recommend that data for all molecules be filtered as described in the ACE-FTS Data Lisage and File Format Document,

« Download complete molecule separated netCDF as zip here [Updated: 2023-05-17)

« Download complete molecule-time separated netCOF as zip here [Updated: 2023-05-17]
« Browse molecule separated netCDF ACE data here [Updaied: 2023-05-17)

« Browse molecule-time separated netCDF ACE data here [Updated: 2023-05-17]

« Browse ASCII ACE data here [Updated: 2023-05-17]
« Download complete set of ASCII files here [Updated: 2023-05-17]




Sentinel-5P

The Copernicus Sentinel-5 Precursor mission is the first Copernicus mission

dedicated to monitoring our aimasphere, Copernicus Sentinel-5P is the result of

close collaboration between ESA, the European Commissicn, the Netherlands

Space Office, industry, data users and scientists. The mission consists of one

satellite carmying the TROPOspheric Monitoring Instrument {TROPOMI) instrument.
The TROPOMI instrument was co-funded by ESA and The Metherlands.

The main objective of the Copemicus Sentinel-5P mission is to perform atmospheric measurements with
high spatio-temporal resolution, 10 be used for air quality, ozone & UV radiation, and chimate manitanng &
forecasting.

Sentinel-5P uses a high inclination orbit (approximately 98.7°). The orbit inclination is the angular distance
of the orbital plane from the equator.

The Sentinel-5F orbit is a near-polar, sun-synchronous orbit with an ascending node equatorial crossing at

13:30 h Mean Local Solar time. In a sun-synchronous orbit, the surface is always illuminated at the same
sun angle.

The orbital cycle is 16 days (14 orbits per day, 227 orbits per cycle). The orbit cycle is the ime taken far
the satellite to pass over the same geographical point on the ground.

The orbit reference altitude is approximately 824 km.
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Sentinel Online
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Home [/ Data Access

Access to Sentinel data via
download
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Meteosat imagery is used to characterise aerosols in the atmosphere, including volcanic :
dust, while onboard Metop, the IASI and GOME-2 instruments observe trace gases such
nitrogen dioxide, carbon monoxide, methane and aerosols.
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PRISMA

Launched on 22 March, 2019, PRISMA is a medium-resolution hyperspectral imaging satellite, developed, owned and operated by ASI (Agenzia Spaziale ltaliana). It is the
successor to the discontinued HypSEO (Hyperspectral Satellite for Earth Observation) mission and has a planned mission duration of 5 years. PRISMA carries two sensor
instruments, the HYC (Hyperspectral Camera) module and the PAN (Fanchromatic Camera) module. The HYC sensor is a prism spectrometer for two bands, VIS/NIR
(Visible/M™ear Infrared) and NIR/SWIR (Mear Infrared/Shortwave Infrared), with a total of 237 channels across both bands
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GOSAT ®

The IBUKI (GOSAT.Greenhouse Gases Observing Satellite) is an artfficial satellite that observes the concentration distribution of greenhouse gases from outer space,
and its purpose is to contribute to the international effort toward prevention of warming, including monitoring the greenhouse gas absorption and emission state.
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This site is operated by T Project o

Mational Institute for

Monthly Global Map of the CO2/CH&4 column-averaged volume mixing ratios
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Major Characteristics

Weight Approx. 1,750kg
Onrhiter Sun-Synchnonous Sub-Recurrent
Altitude Approx. BETkm

Inclination Approx. 98 degrees

1 i}k 1.6% 1, Hi} 1,8%

Period Approx. 98 minutes




Agqua

AIRS, the Atmospheric Infrared Sounder on NASA' Agua satellite, gathers infrared
energy emitted from Earth's surface and atmosphere globally, every day. Its data
provides 3D measurements of temperature and water vapor through the atmospheric
column along with a host of trace gases, surface and cloud properties. AIRS data are
used by weather prediction centers around the world to improve their forecasts. They

are also used to assess the skill of climate models and in applications ranging from
volcanic plume detection to drought forecasting.

AIRS maps the concentration of carbon dioxide and methane globally. AIRS also provides
simultaneous observations of the Earth's atmospheric temperature, ocean surface
temperature, and land surface temperature and infrared spectral emissivity, as well as
hurmnidity, clouds and the distribution of greenhouse gases. This makes AIRS/AMSU a primary

space instrument to observe and study the response of the atmosphere to increased
greenhouse gases.
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