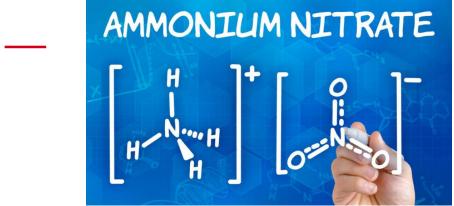


CHARACTERISTICS OF AMMONIUM NITRATE (AN) AND AMMONIUM NITRATE BASED FERTILIZER

Dr. Heike Michael-Schulz


Bundesanstalt für Materialforschung und -prüfung (BAM)

Division 2.2 "Reactive Substances and Systems"

Unter den Eichen 87, 12205 Berlin

Properties of ammonium nitrate

 $T > 170 \, ^{\circ}C$:

 $NH_4NO_3 \longrightarrow 2H_2O + N_2O$ (Decomposition)

Strong initiation:

$$2 NH_4NO_3 \longrightarrow 4 H_2O + N_2 + O_2$$

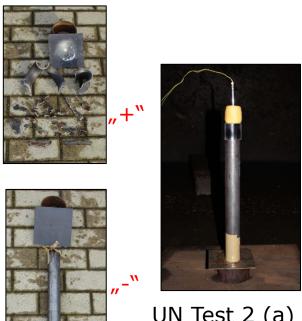
Sum:	NH ₄ NO ₃
Melting point:	169 °C
Boiling point:	210 °C (atmospheric pressure)
Decomposition:	Up to 170 °C

Use of ammonium nitrate

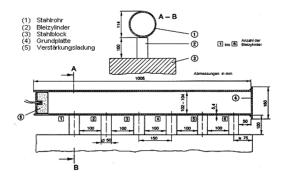
UN/OECD seminar in follow-up to the 2020 Beirut port explosion

Explosive power of ammonium nitrate

Trauzl-Test Nitropenta-detonator (Cu) Nr.8


	Expansion (cm ³ / 10 g)
pure AN	178 ml/dag
AN + 5.5 % Oil, particle size 0.5 mm to 1.0 mm	286 ml/dag
AN + 5,5 % Öl, particle size less than 0.5 mm	353 ml/dag
TNT	300 ml/dag

Tests - Detonability



UN Test 1 (a)

UN Test 2 (a)

Detonability of ammonium nitrate

	UN-GAP-Test 1 (a)	UN-GAP-Test 2 (a)	4-Inch-Steel tube
Technical AN (UN 1942)	Yes	No	Yes (Depends on bulk density)
AN as fertilizer (UN 2067)	No	No	No
AN + 5,5 % Öl (ANFO) as high explosive	Yes	Yes	Yes

AN of class 5.1 UN 1942 and UN 2067

UN 1942:

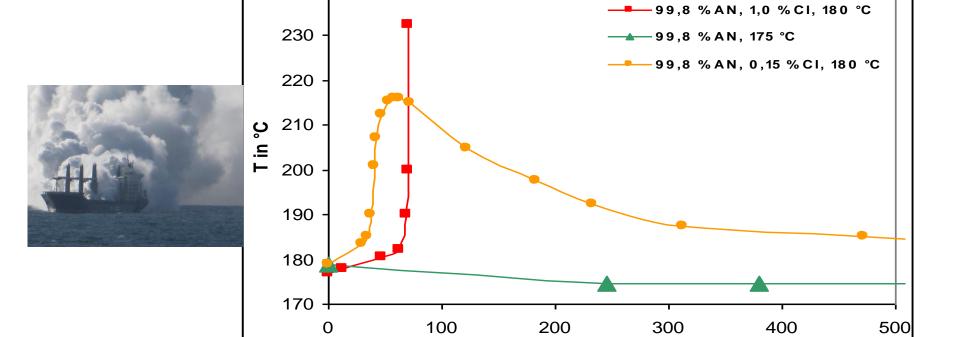
AMMONIUM NITRATE with not more than 0.2 % combustible substances, including any organic substance calculated as carbon, to the exclusion of any other added substance

UN 2067:

AMMONIUM NITRATE BASED FERTILIZER

These entry may only be used for ammonium nitrate and ammonium nitrate based fertilizers that are too insensitive for acceptance into Class 1 when tested in accordance with Test Series 2 (see Manual of Tests and Criteria, Part I).

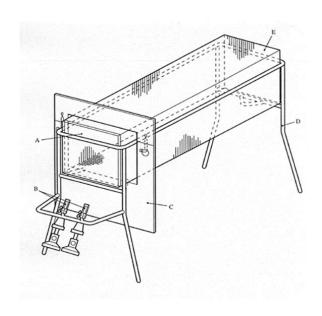
UN 1942 – problematic?


BAM tested 20 different products according to UN test series 2:

State	Number	Test series 2
Sweden	5	Okay
Germany	5	Okay
Netherlands	6	Okay
Brasil	2	Okay
Croatia	2	Okay

Influences on exothermic decomposition

240


UN/OECD seminar in follow-up to the 2020 Beirut port explosion

t in min

Trough-Test (UN-Test S.1):

Self-sustaining exothermic decomposition

Storage regulation (Germany)

Classification of ammonium nitrate based products in groups

Group A

Detonable

Group B

Self-sustaining exothermic decomposition

Group C

Neither A nor B, develop nitrogen oxides by heating

Group D

not dangerous in aqueous solution or suspension but able to detonate in crystallized state

Group E

ammonium nitrate based mixtures, water-oil-emulsion, pre-products for production of high explosives

Group A Technical AN/ fertilizer quality

Composition:

Ammonium nitrate: more/ equal 90 %

Chloride content: less/ equal 0,02 %

• Inerte substances: less/ equal 10 %

Combustible substances: maximum 0,2 %

Group A protection against contamination/ limitation of damage/ effect

- Storage and transport (also in-house) only packed
- Division into subsets of maximum 25 tons
- Additional requirements
 - Construction of warehouses
 - > Safety distances between the subsets (Prevention of detonation propagation)
 - > Distances to buildings (e.g. residential buildings) $E = 11\sqrt[3]{11}$ (for 25 t, 320 m)
 - Distances to public transport routes

2/3 E (for 25 t, 213 m)

THANK YOU FOR YOUR ATTENTION

Contact:

Dr. Heike Michael-Schulz

Bundesanstalt für Materialforschung und -prüfung (BAM)
heike.michael-schulz@bam.de