Informal document GRSP-73-23-Rev.1 (73rd GRSP, 15-19 May 2023 agenda item 3)

[GRSP]

Proposing methods to shorten verification test time of expected on-road performance and performance durability for Compressed Hydrogen Storage System under GTR No.13

[First topic]

A Filler Method of Reducing Hydrogen Storage Container Volume to Shorten Gas Pressure Cycling Test Time

Korea Gas Safety Corporation Hyundai Motor Company 2023.05

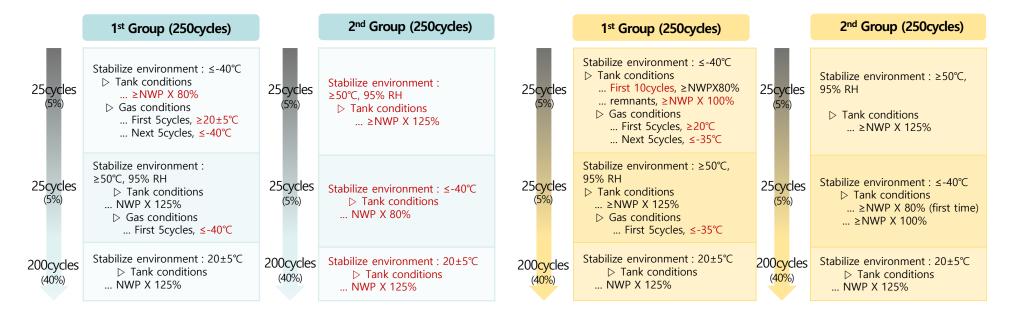
- I. Background and purpose of research (Pneumatic)
- II. Research Contents
 - Test concept
 - Test process
 - Test result & Proposal

Background and purpose of research (Pneumatic)

Verification Test takes a lot of time and cost

Ambient and Extreme Temperature Gas Pressure Cycling Test

Roughly months to a year, almost few hundreds of millions.


GTR No.13

SAE J2579

Test procedure

- 500 cycles, 1st + 2nd Group
- Hydrogen gas temperature ≤-40°C
- Stabilize environment for at least 24 hours
- Pressure: 20 (+0/-10) bar to target pressure (±10 bar)
- Fill rate: 3min ramp, < 60g/s (Fill rate ↓ when gas temperature 85°C)

- 500 cycles for light-duty, 1st + 2nd Group
- Hydrogen gas temperature ≤-35°C
- Stabilize environment for at least 24 hours
- Pressure: 20 (+0/-10) bar to target pressure
- Maintain Exhaust Speed (Manufacturer Presented)

Research Contents_Test Concept

ISO 19881:2018 "Gaseous hydrogen — Land vehicle fuel containers"

17.3.13.2 Procedure

The hydrogen gas cycling test shall be performed in accordance with the following procedure.

The container shall be pressure cycled using hydrogen from 2 MPa \pm 1 MPa to 125 % of the nominal working pressure for 1 000 cycles. The end boss at the valve end (the end where the fill/discharge occurs) may be grounded. Each cycle shall consist of filling and venting of the container. The fill rate shall not exceed 60 g/s and the maximum allowable gas temperature shall not be exceeded. The defueling rate shall be specified by the container manufacturer.

The first 500 cycles shall be conducted at the ambient temperature, followed by a static hold at 115 % of the nominal working pressure (± 1 MPa) at 55 °C for a minimum of 30 h. The second 500 cycles shall be conducted with the container at an ambient temperature of -30 °C (250 cycles) and at 50 °C (250 cycles).

Subscale specimens may be used for this test with diameters reduced by as much as 20 % and lengths reduced by as much as 50 %.

Save time and cost using subscale specimens

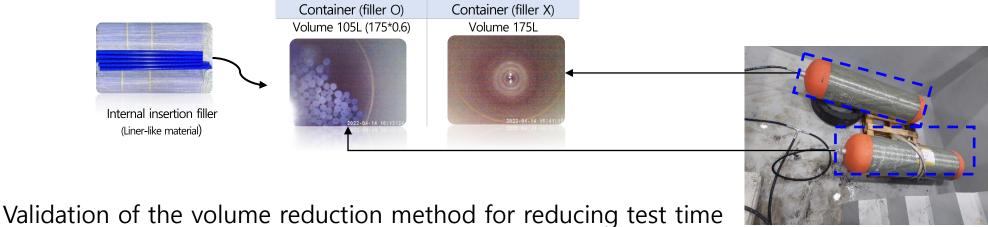
ISO/FDIS 19884 "Gaseous hydrogen — Cylinders and tubes for stationary storage"

8.3.3 Pressure vessel tests

8.3.3.2 Use of subscale units

Where indicated, tests may be performed on full scale diameter pressure vessels of shorter length; however, the L/D ratio of sub-scale units shall be greater than 2,5. If the full scale cylinder L/D ratio is less than 2,5, a full scale cylinder is required. The winding pattern of the sub-scale unit shall be the same as the full scale pressure vessel.

Full-scale pressure vessels containing a filler material to reduce the internal volume may also be used.


Save time and cost using containing a filler

Our choice

Research Contents_Test process

Comparison of the volume reduced storage container (40% filler inserted, 70L) and the normal storage container by brief test

Validation of the volume reduction method for reducing test time. Not with the durability of the storage container through repeated hydraulic cycling test

Sample	Volume	-	GTR No.13			-	EC 79/2009	GTR No.13	-	
		Leak test	Permeation test	Pressure cycling Test (Gas/Brief)	Permeation test	Internal inspection	Pressure cycling Test (Hydraulic)	Permeation test	Internal inspection after cutting	
Container (filler O)	105L (175L*60%)	■ 10 Mpa to 87.5 Mpa	. ,		right(55 C)	■ High temperature (55°C)	- Physical	■ Ambient temperature (20°C)	■ High temperature (55°C)	■ Physical Damage
Container (filler X)	175L			Low(-40°C) temperature Perform 5 times each	• Middle Permeation rate② measurement	l (heck	■ 125% NWP ■ 5,000 cycles	• Final permeation rate③ measurement	Check	

Research Contents_Test result and Proposal

The filler method test time reduction verification (up to 77%), No internal damage caused by fillers

Sample	Volume	Leak test	First permeation rate (a) (cc/hr/L)	Average test time	Middle Permeation rate (b) (cc/hr/L)	Internal inspection	Pressure cycling Test (Hydraulic)	Final permeation rate © (cc/hr/L)	Internal inspection after cutting	
Container (filler O)	105L	No	4.57 (9.9% compared to the limit)	54min/cycle (@20°C) 67min/cycle (@55°C) 224min/cycle (@-40°C)	6.37 (13.8% compared to the limit)	No damage	■ Docc	6.34 (13.8% compared to the limit)	No damaga	
Container (filler X)	175L	leak	2.09 (4.5% compared to the limit)	109min/cycle (@20°C) 91min/cycle (@55°C) 979min/cycle (@-40°C)	5.52 (12% compared to the limit)	No damage	■ Pass	5.28 (11.5% compared to the limit)	No damage	
				2		4	→3←		4	

- Depending on the container manufacturing deviation, the first permeation rate is different, and the middle permeation rate after the pressure cycling(Gas/Brief) test both satisfies the GTR No.13 (values @ and @)
- ② Check the test method for shorter time, lower temperature means higher effect (@20°C 50%, @-40°C 77%)
- There is little effect on leakage even if the pressure cycling test(Hydraulic) is carried out with fillers in it (small difference in values (b) and (c))
- 4 Checked the inside of the container and found no physical damage

[GRSP]

Proposing methods to shorten verification test times of expected on-road performance and performance durability for Compressed Hydrogen Storage System under GTR No.13

[Second topic] A Research for reducing High temperature static pressure test time for hydrogen storage containers

Korea Gas Safety Corporation 2023.05

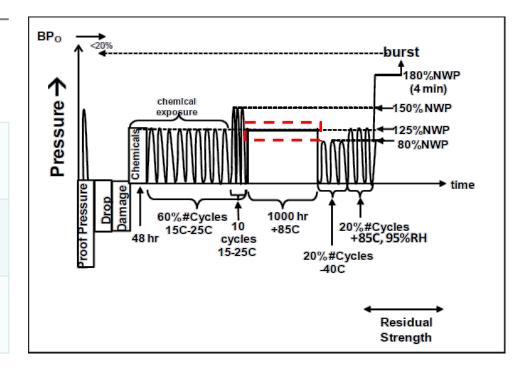
- I. Background and purpose of research (Hydraulic)
- II. Research Contents
 - Test concept
 - Test process and result

Verification Test takes a lot of time

High temperature static pressure test (HTSPT)

To reduce test time, We are looking for ways to shorten a test method that takes 1,000 hours for one test

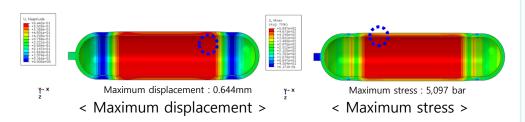
GTR No.13


Test procedure

■ Test time : 1,000 hour

■ Fluid temperature: +85°C

Fluid Pressure: 875 barFluid type: Non-corrosive fluid


- Stabilize environment for at least 24 hours
 - Before High temperature static pressure test
 - Proof Pressure test
 - Drop test
 - Damage test
 - Chemical exposure and ambient-temperature pressure cycling test
 - High temperature static pressure test
 - test time: 1,000 hour
 - minimum test time : almost 42 days
 - After High temperature static pressure test
 - Extreme temperature pressure cycling test
 - Hydraulic residual pressure test
 - Residual burst strength test

Research Contents_Test process and result

Hydrogen Storage Container structural analysis for high temperature static pressure test

Hydrogen Storage Container information

Weight : 120 kg
Length : 1.8 m

Analysis method

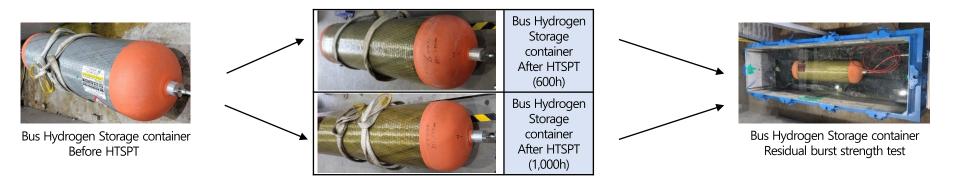
- Input: material properties (600h, 800h, 1000h)

- Pressure : 875 bar

Result of structural analysis according to properties

	No.		1(BASE)	2	3	4
	CERR mantarial	Hour	-	600	800	1,000
	CFRP material	Temp (°C)	20	85	85	85
ult	Max. Stress	(MPa)	509.7	508.5	508.6	509.7
Result	Max. Displacen	0.644	0.608	0.620	0.622	

CFRP Properties according to temperature and test time


	No.		1(BASE)	2	3	4
	CEDD material	Hour	-	600	800	1,000
	CFRP material	Temp (°C)	20	85	85	85
	Tensile Streng	2,671.25	2,535.10	2,539.67	2,582.93	
Result	Elastic Modul	149.06	157.54	154.42	154.42	
	Poisson's	0.31	0.32	0.32	0.31	

→ In the structural analysis of the container material and the tensile test that simulated in, it was confirmed that the hydrogen sotorage container for 600 and 800 hours were more vulnerable than the high-temperature static pressure for 1,000hours.

Research Contents_Test process and result

Comparison of demonstration tests for actual hydrogen Storage Container

Validation of the test time reduction method for reducing test time

Sample	Test Time (hour)	GTR No.13							
		Before HTSPT	HTSPT	After HTSPT	Residual burst strength test	Burst pressure (Mpa)			
Container (decrease)	600		Temperature : 85°C Pressure : 875 bar (125% NWP)	-	0 MPa to burst pressure	The test In progress			
Container (general)	1,000	-				187.5			

→ Based on findings of the research, we would like to propose initiating a discussion on reducing the duration time of the high temperature static pressure test.

Thank you.

E-mail: kalma4935@kgs.or.kr