The second meeting of the Working Group on tailings safety and prevention of accidental water pollution in Tajikistan 25-26 May 2023



#### "Inventory of tailings in the Syr Darya River basin – Overview of the main hazards and risks"

**Dmitry Rudakov** Consultant to the UNECE Industrial Accidents Convention







### Methodology and objectives of the inventory

- Methodology for tailings (version 2020), hazard and risk index method of tailings.
- The template for data collection and analysis was refined based on the results of the project on the safety of tailings in the Danube River basin (Romania) in 2019-2020
- Inventory objectives:

1) collection and refinement of data on tailings in the Syr Darya River basin;

- 2) calculation of hazard and risk indices of tailings;
- 3) ranking and preparing data for mapping

TEXTE 185/2020

Safety of the Tailings Management Facilities in the Danube River Basin

#### **Technical Report**

by:

Adam Kovacs, Oleksandra Lohunova International Commission for the Protection of the Danube River, Vienna

Gerhard Winkelmann-Oei German Environment Agency, Dessau-Roßlau

Ferenc Mádai University of Miskolc, Miskolc

Zoltán Török Babes-Bolyai University, Cluj-Napoca

Publisher: German Environment Agen

## State-administrative map of the territory of the Syr Darya river basin



### Key data on tailings facilities in the basin countries

| Parameter                                                                                          | Kazakhstan | Kyrgyzstan | Tajikistan | Uzbekistan | Total or<br>average |
|----------------------------------------------------------------------------------------------------|------------|------------|------------|------------|---------------------|
| Number of operating tailings / Total<br>number of tailings                                         | 4/9        | 7/30       | 0/10       | 8/12       | 19/61               |
| Share of operating tailings, %                                                                     | 44,4       | 23,3       | 0          | 66,6       | 31,1                |
| Total amount of tailing<br>materials, mln m <sup>3</sup>                                           | 514,359    | 130,049    | 27,450     | 704,550    | 1376,41             |
| Share of tailings in operating tailings, %                                                         | 86,2       | 89,8       | 0          | 98,9       | 91,3                |
| Average tailings toxicity (UBA*<br>scale)                                                          | 1,27       | 2,97       | 3,99       | 3,00       | 2,37                |
| Waste load on the territory of the country in the Syr Darya basin, m <sup>3</sup> /km <sup>2</sup> | 1491       | 1176       | 2495       | 11735      | 2614                |
| Waste load per capita in the Syr Darya<br>basin, m <sup>3</sup> /person                            | 150,03     | 40,17      | 15,78      | 45,35      | 57,54               |
| Number of tailings with transboundary significance                                                 | 0          | 19         | 10         | 4          | 33                  |

### Status and amount of waste in tailings

| Country    | Number of tailings |        |               |              | Tailin  | gs storage c | Dominant tailing |         |                                                                               |
|------------|--------------------|--------|---------------|--------------|---------|--------------|------------------|---------|-------------------------------------------------------------------------------|
|            | Operating          | Closed | Abandon<br>ed | Recultivated | Minimum | Maximum      | Average          | Total   | materials                                                                     |
| Kazakhstan | 4                  | 4      | 0             | 1            | 0,100   | 286,624      | 57,151           | 514,359 | Phosphorus<br>production waste,<br>non-ferrous metal<br>mining pulp           |
| Kyrgyzstan | 7                  | 18     | 5             | 0            | 0,020   | 100,000      | 4,335            | 130,049 | Sludge extraction of<br>radioactive ores and<br>ores of non-ferrous<br>metals |
| Tajikistan | 0                  | 10     | 0             | 0            | 0,070   | 19,400       | 2,745            | 27,45   | Radioactive and non-<br>ferrous ore sludge                                    |
| Uzbekistan | 12                 | 3      | 1             | 0            | 0,165   | 409,100      | 58,713           | 704,55  | Non-ferrous ore<br>sludge and<br>phosphorus sludge                            |

## Ranking of tailings by hazard index (THI) and risk index (TRI) of tailings storage facilities. Kazakhstan



## Ranking of tailings by hazard index (THI) and risk index (TRI) of tailings storage facilities. Kyrgyzstan



## Ranking of tailings by hazard index (THI) and risk index (TRI) of tailings storage facilities. Tajikistan



## Ranking of tailings by hazard index (THI) and risk index (TRI) of tailings storage facilities. Uzbekistan



### The most dangerous tailings

#### Kazakhstan

| Name of the tailing                   | Location | Capacity of tailing mln m3 | Toxic<br>substances | тні   | THI rank | TRI   | TRI rank |
|---------------------------------------|----------|----------------------------|---------------------|-------|----------|-------|----------|
| Sludge accumulator 5<br>"Kainar " LLP | Shymkent | 286,624                    | Phosphorus          | 14,46 | 12       | 21,46 | 10       |
| Sludge accumulator 6<br>"Kainar " LLP | Shymkent | 95,5                       | Phosphorus          | 13,98 | 22       | 20,98 | 17       |

#### Kyrgyzstan

| Name of the tailing                                            | Location                                 | Capacity of tailing mln m3 | Toxic<br>substances | тні   | THI rank | TRI   | TRI rank |
|----------------------------------------------------------------|------------------------------------------|----------------------------|---------------------|-------|----------|-------|----------|
| Kumtor, "Kumtor Gold<br>Company"                               | Naryn                                    | 100                        | Cyanides            | 17,0  | 2        | 22,0  | 7        |
| Makmalskoe No. 1,<br>"Makmalzoloto" plant                      | Kazarman village,<br>Toguz-Toro district | 7,5                        | Cyanides            | 15,88 | 4        | 22,88 | 4        |
| Sur-Tash, Aidar-Ken<br>Mercury Plant                           | Aydarken                                 | 4,0                        | Hg, Sb              | 15,6  | 5        | 20,60 | 22       |
| Sumsar No. 1, Ministry<br>of Emergency<br>Situations of the KR | Sumsar, Chatkal region                   | 0,28                       | Pb, Zn, Cd, As      | 14,45 | 13/14    | 19,45 | 35/36    |

### The most dangerous tailings

#### Tajikistan

| Name of the tailing               | Location | Capacity of tailing mln m3 | Toxic substances                                             | тні   | THI rank | TRI   | TRI rank |
|-----------------------------------|----------|----------------------------|--------------------------------------------------------------|-------|----------|-------|----------|
| Digmay,<br>MPNT RT                | Goziyon  | 19,4                       | Radionuclides: U,<br>Pu, Th, Rh, Po; Cd,<br>Pb, Zn, Cyanides | 15,29 | 6        | 23,29 | 3        |
| Maps 1-9 of<br>Chkalovsk, MPNT RT | Buston   | 2,6                        | Radionuclides: U,<br>Pu, Th, Rh, Po                          | 14,41 | 15       | 22,41 | 5        |

#### Uzbekistan

| Name of the tailing                 | Location                                        | Capacity of tailing mln m3 | Toxic substances | тні   | THI rank | TRI   | TRI<br>rank |
|-------------------------------------|-------------------------------------------------|----------------------------|------------------|-------|----------|-------|-------------|
| Tailing No. 1 of<br>Almalyk MMC JSC | Almalyk, Pskent<br>district, Tashkent<br>region | 269,5                      | Se, Cd, P2O5     | 17,43 | 1        | 25,43 | 1           |
| Tailing No. 2 of<br>Almalyk MMC JSC | Almalyk, Pskent<br>district, Tashkent<br>region | 409,1                      | Se, Cd, P2O5     | 16,61 | 3        | 23,61 | 2           |

### Tailings with potential transboundary effects

| Country    | Location                                                                         | Total<br>quantity |
|------------|----------------------------------------------------------------------------------|-------------------|
| Kyrgyzstan | Naryn, Mailuu-Suu, Sumsar, Chatkal region, Kadamjay,<br>Aydarken                 | 19                |
| Tajikistan | Goziyon, Gafurov, Buston, Istiklol, Adrasman, Khujand                            | 10                |
| Uzbekistan | Chadak, Pap district, Namangan region, Almalyk, Pskent district, Tashkent region | 4                 |

# Comparative analysis of the hazard and risk of tailings in the Syr-Darya river basin

|                     | Kazakhstan      | Kyrgyzstan    | Tajikistan    | Uzbekistan   |
|---------------------|-----------------|---------------|---------------|--------------|
| THI/TRI             | 9,00 /          | 10,45 / 15,45 | 12,38 / 18,38 | 11,65 /      |
| min                 | 15,69           |               |               | 18,65        |
| THI/TRI             | 14,46 /         | 17,00 / 22,88 | 15,29 / 23,29 | 17,43 /      |
| max                 | 21,46           |               |               | 25,43        |
| Avergage<br>THI/TRI | 12,24<br>/18,69 | 13,24 / 19,07 | 13,71 / 21,01 | 14,34 /21,17 |



### Conclusion

- In general, the most hazardous tailings are located in Uzbekistan and Tajikistan, compared to the less hazardous ones in Kyrgyzstan and Kazakhstan. Most of them store waste from the extraction of gold, non-ferrous metals, uranium, and phosphorus production.
- The basin countries have specific hazards and risks associated with tailings. Kazakhstan has the highest per capita burden; Uzbekistan has the highest volume of waste per country, Tajikistan has tailings with materials of higher toxicity.
- Thirty-three of the 61 tailings are of transboundary importance, with the majority located in Kyrgyzstan (19) and Tajikistan (10), at the same time, 2 out of 4 transboundary tailings in Uzbekistan store hundreds of millions of m3 of waste.

## Thank you for your attention!