

The second meeting of the Working Group on tailings safety and prevention of accidental water pollution in Tajikistan

4 April 2023, Dushanbe

On updating the cadastre and mapping of tailings in Tajikistan

BY: OLEKSANDRA RIEDL

Tasks set when creating a map

creation of a practical and easy-to-use tool, also for personnel who do not have access to special software

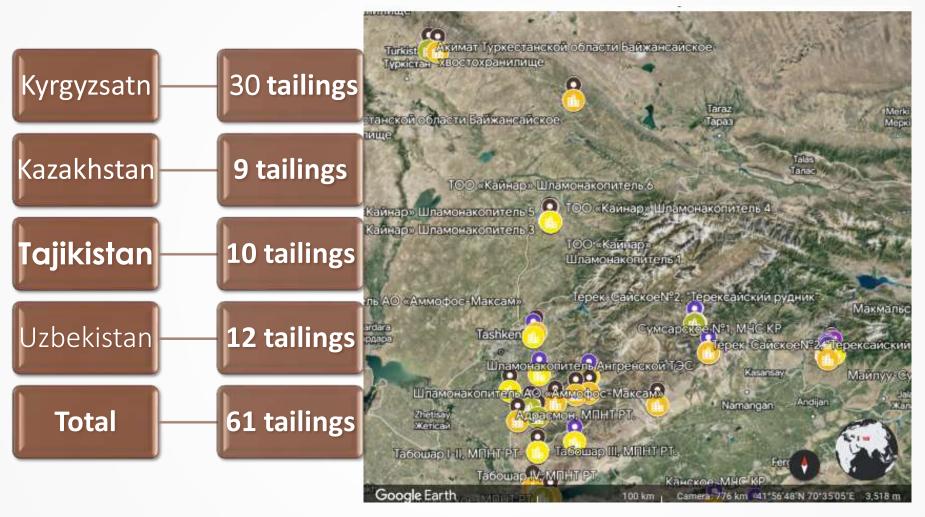
Created maps

Map of tailings in the Syr Darya river basin (in Russian and English)

Offline maps (Google earth)

 Map of dangerous objects in the Syr Darya river basin (in Russian and English)

Online maps (Google my maps)


Accessible map layers of tailings in the Syr Darya river basin

Tailings in Uzbekistan

- Tailings in Tajikistan
- Tailings in Kazakhstan
- Tailings dumps in Kyrgyzstan
- Cross-border tailings
- THI ranking for all countries (national level)
- TRI ranking for all countries (national level)
- Ranking according to the THI according to the international gradation
- Ranking according to the TRI according to the international gradation

Map of tailings in the Syr Darya river basin

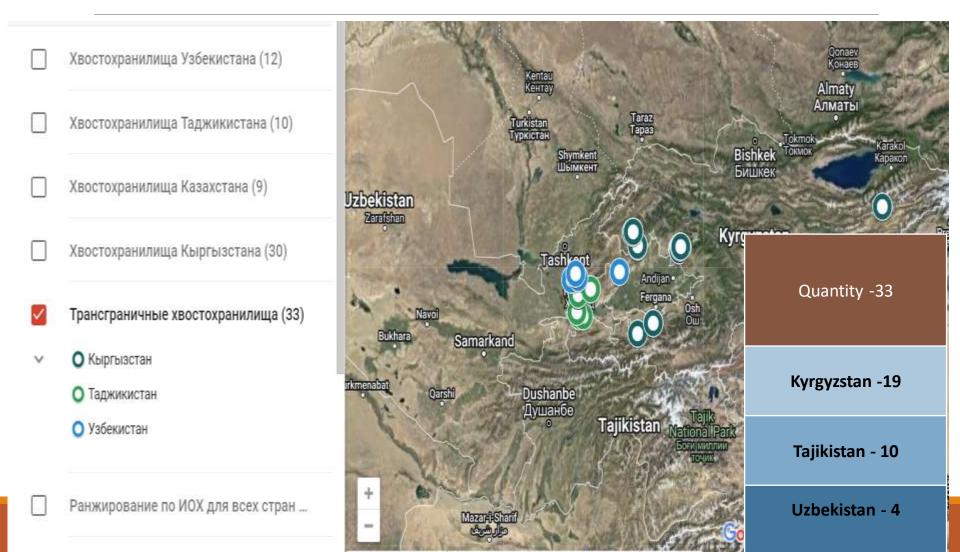
In 2019, a separate map of the tailings of Tajikistan was created for 13 tailings

Ranking by THI and TRI for the international level:

RANKING BY THE TAILING HAZARD INDEX (THI)	RANKING BY THE TAILING RISK INDEX (TRI)
Very low (THI≤8)	Very low (TRI≤13)
Low (8 <thi≤10)< td=""><td>Low (13<tri≤15.5)< td=""></tri≤15.5)<></td></thi≤10)<>	Low (13 <tri≤15.5)< td=""></tri≤15.5)<>
Average (10 <thi≤12)< td=""><td>Average (15.5<tri≤18)< td=""></tri≤18)<></td></thi≤12)<>	Average (15.5 <tri≤18)< td=""></tri≤18)<>
High (12 <thi≤14)< td=""><td>High (18<tri≤20.5)< td=""></tri≤20.5)<></td></thi≤14)<>	High (18 <tri≤20.5)< td=""></tri≤20.5)<>
Very high (THI>14)	Very high (TRI>20.5)
Total tailings: Very high-28, high- 27,average-6 All tailings in Tajikistan are classified as very high risk	Total tailings: Very high-28, high- 27,average-6 Of them in Tajikistan: high- 1, very high - 9

THI and TRI ranking for national level

This approach has also been used in previous UNECE projects


Approach harmonized for use in European countries

2019 THI Range	- the state of the state of the	Ranking range
Low level (35%) 4 - Tajikistan Medium level (50%) 7 - Tajikistan	Taraz Tapas Talas Tanac	Low level (35%) 1 – Kazakhstan 5 – Kyrgyzstan 3 – Tajikistan 4 – Uzbekistan
High level (15%) 2 - Tajikistan	Ugam-Chatkal National Park Kastery Namangan Andijar	Medium level (50%) 5 – Kazakhstan 15 – Kyrgyzstan 5 – Tajikistan 6 – Uzbekistan
zakh Istaravshan Истаравшан	Kokand Fergana Batken Batken Batran	High level (15%) 3 – Kazakhstan 10 – Kyrgyzstan 2 – Tajikistan 2 – Uzbekista

Tailings of Tajikistan in the Syr Darya river basin

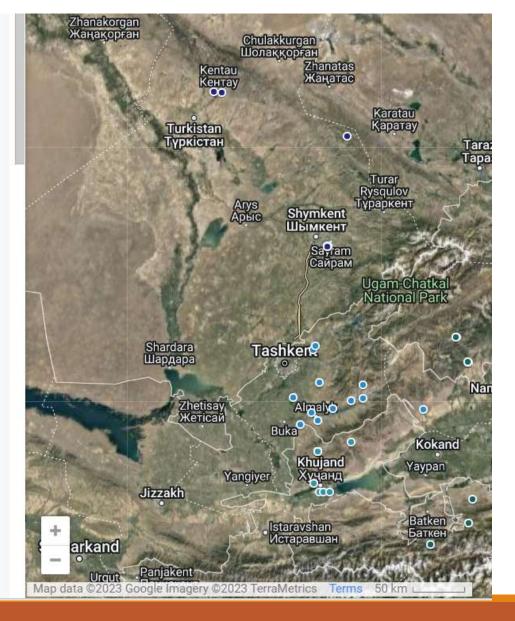
Name of the tailing	Tailings Tai Hazard Index Ris	ilings THI range	TRI range		TRI ranking for international level
Digmayskoye, MIT RT.		High level			
	17.3	25.3	High level	very high	very high
Maps 1-9 of Chkalovsk, MIT		High level			
RT.	16.4	24.4	High level	very high	very high
Taboshar IV, MIT RT.	16.4	Medium 23.4level	Medium Ievel	very high	very high
Gafurovskoe, MIT RT.	15.4	Medium 23.4Ievel	Medium Ievel	very high	very high
Mine #3, MIT RT.	15.3	Medium 23.3 level	Medium Ievel	very high	very high
Waste of poor ores of		Medium	Medium		
Taboshar, MIT RT.	16.1	23.1 level	level	very high	very high
Taboshar I-II, MIT RT.	16.0	Medium 23.0level	Medium Ievel	very high	very high
Taboshar III, MIT RT.		Low level	Low level		
	15.0	22.0		very high	very high
Taboshar No. 3, MIT RT.		Low level	Low level		
	14.8	21.8		very high	very high
Adrasmon, MIT RT.		Low level	Low level		
	14.4	20.4		very high	high

Tailings with possible transboundary effect

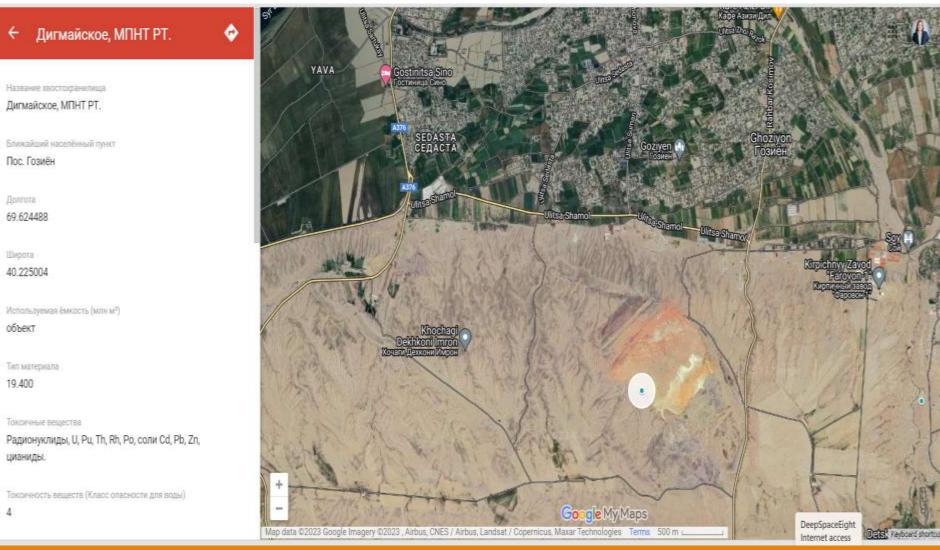
Information about individual tailings

Tailings name Nearest town Latitude, Longitude Usable capacity (million m³) Material type **Toxic Substances** Substance toxicity (Water hazard class) tailings status Settlements in the risk zone Nearest water body in the risk zone The year to which the data refers **Cross-border effect Tailings Hazard Index Tailings Risk Index THI ranking TRI ranking** International ranking level for THI International ranking level for TRI A country

Tailings name Region, city / district Latitude, Longitude The volume of stored tailings materials Stored material Hazard Class Status Maximum horizontal ground acceleration Flood frequency (HQ-100) Dam: material Dam: crest width Year of commissioning THI **THI range**

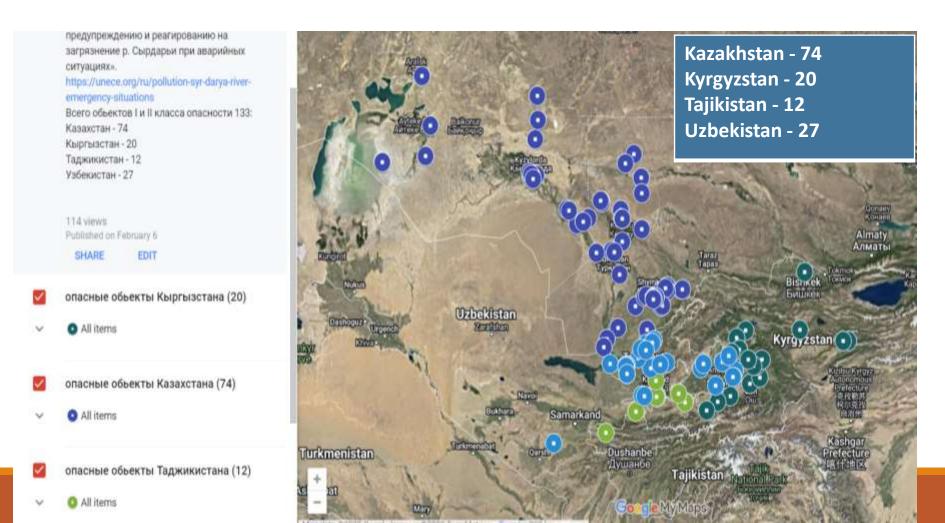

Using a map legend

 Карта подготовлена в рамках первого этапа проекта Европейской экономической комиссии Организации Объединенных Наций (ЕЭК ООН) «Разработка совместных мер по предупреждению и реагированию на загрязнение р. Сырдарьи при аварийных ситуациях».
Количество хвостохранилищ в бассейне р Сырдарья - всего 61 в Казахстане – 9 в Кыргызстане – 30 в Таджикистане – 10 в Узбекистане - 12


> Количество хвостохранилищ с возможным трансграничным эффектом -33 в Казахстане – 0 в Кыргызстане – 19 в Таджикистане - 10 в Узбекистане - 4

Ранжирование по ИОХ и ИРХ для национального уровня:

Ранжирование для Казахстана низкий уровень 1 х-ще средний уровень -5 х-щ



Aspects of information visualization on the example of the Tajik tailings

Mapping of pollution sources

A total of 133 hazardous activities have been mapped, which include a wide range of chemical contaminants, ranging from petroleum products and heavy metals to chemicals for processing agricultural products.

Information on individual hazardous objects

Operator/owner
Latitude, Longitude
Location
River nearby
Hazard class (I or II)
Stored materials
The volume of stored materials (planned) or the volume of production per year
Object status
Year of launch (beginning of operation)

Main conclusions

- The map has been further improved to provide a useful tool for the competent authorities to collect and analyze information about the danger of objects and take preventive measures to prevent emergencies with negative consequences for the environment and public health.
- The map allows you to determine the affected areas, including settlements and polluted water bodies, in the event of an accident at the enterprise.
- This map can be used for integration into the country's cadastral system.
- The developed map allows countries to get an overview of hazardous facilities and tailings in order to subsequently take additional safety measures from the relevant competent authorities.

Thank you for your attention!