

raw materials

A Swiss case study on embedded electronics in endof-life vehicles

26.04.2023 - UNECE Resource Management Week 2023

Kirsten Remmen¹, Manuele Capelli¹, Ulrich Kral², Patrick Wäger¹

¹Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland ²Environment Agency Austria, Vienna, Austria

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

EU Framework Programmes

Motivation

"The project plan may be detailed or conceptual (in the case of long-term national resource planning)"

Test application on a national level: Embedded Electronics Devices (EED) in End-of-Life(EoL) Vehicles in Switzerland

Funding: Swiss Federal Office for the Environment (FOEN)

Approach

Consistent, transparent and comparable reporting

Applying UNFC to Swiss FOEN Project

- Chose Factors to analyze Criteria (Axis)
- Allocate Categories (e.g. E1, E2. E3)
- Classify

Embedded Electronics Devices (EED) in End-of-Life (EoL) Vehicles - Swiss FOEN Project

- Baseline : No specific CRM recovery from EED
- Recycling: CRM recovery from EED

Database

Applying UNFC - Selection of Factors

E-Axis

Environmental-socio-economic

- Legislation
- Policy implementation
- Awareness of raw material criticality
- Political willingness
- Stakeholder interest
- Social license
- Environmental impacts
- Financial capability
- Profitability

F-Axis

Technical feasibility

- Infrastructure
- Technology readiness level (TRL)
- Operating License

G-Axis

Degree of confidence

- Knowledge of material regarding quantity and quality
- Supply continuity

Applying UNFC - Selection of Factors

E-Axis

Environmental-socio-economic

- Legislation
- Policy implementation
- Awareness of raw material criticality
- Political willingness
- Stakeholder interest
- Social license
- Environmental impacts
- Financial capability
- Profitability

F-Axis

Technical feasibility

- Infrastructure
- Technology readiness level (TRL)
- Operating License

G-Axis

Degree of confidence

- Knowledge of material regarding quantity and quality
- Supply continuity

	F		
ı			Ш

Factor	Evaluation Method	Scenario	Result	Category
Supply continuity				
continuity				

F	

Factor	Evaluation Method	Scenario	Result	Category
Supply continuity	Dynamic Material Flow Analyses (dMFA) and Simulations			

F	

Factor	Evaluation Method	Scenario	Result	Category
Supply	Dynamic Material Flow	Baseline: No specific CRM recovery		
continuity	Analyses (dMFA) and Simulations	Recycling: CRM recovery from EED		

F	

Factor	Evaluation Method	Scenario	Result	Category
Supply continuity	Dynamic Material Flow	Baseline: No specific CRM recovery	CRM do not enter relevant WEEE recycling chain	G4
	Analyses (dMFA) and Simulations	Recycling: CRM recovery from EED		

Factor	Evaluation Method	Scenario	Result	Category
Supply continuity	Dynamic Material Flow	Baseline: No specific CRM recovery	CRM do not enter relevant WEEE recycling chain	G4
	Analyses (dMFA) and Simulations	Recycling: CRM recovery from EED	CRM enter WEEE recycling chain increase in supply is to be expected	G2

Secondary raw materials supply continuity from EoL products strongly depends on external factors

→ High uncertainties

F-Axis - Technology Readiness

F

Factor	Evaluation Method	Scenario	Result	Category
Technology		Baseline: No specific CRM recovery		
readiness		Recycling: CRM recovery from EED		

F-Axis - Technology Readiness

Factor	Evaluation Method	Scenario	Result	Category
Technology	Technology Readiness	Baseline: No specific CRM recovery		
readiness	Level (TRL)	Recycling: CRM recovery from EED		

Whole recyclic hain needs to be analyzed as it is an integrated syst (SWICO, SENS)

- → System readiness approach is needed
- → System readiness approach is going beyond technical evaluation, hence beyond F-Axis

F-Axis - System readiness

Factor	Evaluation Method	Scenario	Result	Category
System	System readiness level H	Baseline: No specific CRM recovery		
readiness		Recycling: CRM recovery from EED		

Whole recycling chain needs to be analyzed as it is an integrated system (SWICO, SENS)

- → System readiness approach is needed
- → System readiness approach is going beyond technical evaluation, hence beyond F-Axis

F-Axis - System readiness

Factor	Evaluation Method	Scenario	Result	Category
System	System readiness level	Baseline: No specific CRM recovery	No specific WEEE recycling system is applied	F4
readiness		Recycling: CRM recovery from EED		

Whole recycling chain needs to be analyzed as it is an integrated system (SWICO, SENS)

- → System readiness approach is needed
- → System readiness approach is going beyond technical evaluation, hence beyond F-Axis

F-Axis - System readiness

Factor	Evaluation Method	Scenario	Result	Category
System	System readiness level	Baseline: No specific CRM recovery	No specific WEEE recycling system is applied	F4
readiness		Recycling: CRM recovery from EED	WEEE recycling system is operational	F1

Whole recycling chain needs to be analyzed as it is an integrated system (SWICO, SENS)

- → System readiness approach is needed
- → System readiness approach is going beyond technical evaluation, hence beyond F-Axis

E-Axis - Environmental impacts

Factor	Evaluation Method	Scenario	Result	Category
Environmental		Baseline - Current system: No specific CRM recovery		
impacts		EED Recycling – Future scenario: CRM recovery from EED		

E-Axis - Environmental impacts

Factor	Evaluation Method	Scenario	Result	Category
Environmental impacts	Life cycle assessment (LCA)	Baseline - Current system: No specific CRM recovery		
		EED Recycling – Future scenario: CRM recovery from EED		

Results - Life cycle assessment

Headlights EED

Recycling

Headlights

Baseline

Actuators

Baseline

Environmental Impacts

Controllers

Baseline

Actuators EED

Recycling

Controllers

EED Recycling

Cables

Baseline

Cables EED

Recycling

E-Axis - Environmental impacts

F	

Factor	Evaluation Method	Scenario	Result	Category
Environmental impacts	Life cycle assessment (LCA)	Baseline: No specific CRM recovery	Functions as reference scenario in LCA evaluation No specific CRM recovery, hence not possible to evaluate	E1 NA
		Recycling: CRM recovery from EED		

Factor	Evaluation Method	Scenario	Result	Category
Environmental impacts	Life cycle assessment (LCA)	Baseline: No specific CRM recovery	Functions as reference scenario in LCA evaluation No specific CRM recovery, hence not possible to evaluate	E1 NA
		Recycling: CRM recovery from EED	EED recycling leads to an overall environmental benefit for headlights, actuators controllers	E1

LCA is as a suitable method:

- to evaluate environmental impacts on system level
- to identify hotspots for potential projects
- to be legally compliant with Swiss E-Waste legislation (ORDEE) → Direct link to further E-Axis
 factors political willingness and legislation

"Embedded electronic devices from vehicles need to be separately recycled if it is economically viable and environmentally sound"

Lessons learned:

- Secondary raw materials supply continuity from EoL products strongly depends on external factors
- System readiness approach going beyond TRL, hence beyond going F-Axis
- LCA is as a suitable method to evaluate environmental impacts on system level and to identify hotspots for potential projects

FutuRaM Roadmap:

- Develop a consistent procedure to assess and classify SRM recoverability in line with the UNFC
- Use case studies to test, further develop, validate and demonstrate the procedure in line with the UNFC

Thank you for your attention

Acknowledgment:

- Charles Marmy, Empa
- Isabelle Baudin, Swiss Federal Office for the Environment (FOEN)

Kirsten Remmen

Research Associate

Empa

St. Gallen, Switzerland

kirsten.remmen@empa.ch

