

Examples for Recycling and Recovery Projects

Ronald Arvidsson, SGU Rudolf Suppes, Holcim Andrea Winterstetter, KRAIBURG TPE Daniel Monfort, BRGM

Recycling and Recovery Projects Examples

- 1. UNFC testing for recovery of critical raw materials in Sweden from apatite iron ore tailings
- 2. The potential to recover tungsten from a tailings pile in Portugal
- **3.** The potential to provide CRMs from Magnets in Austria
- 4. Critical raw materials recycling projects in France

Futu RaM

UNFC testing for recovery of critical raw materials in Sweden from apatite iron ore tailings

Example 1

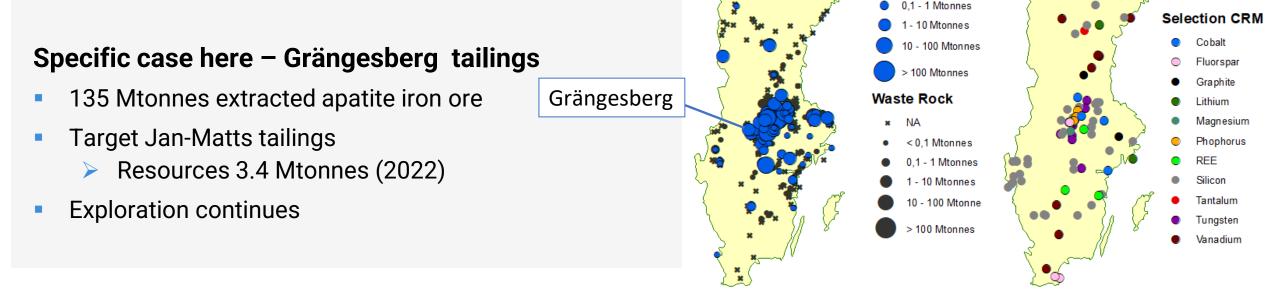
Ronald Arvidsson, Anna Ladenberger, Roger Hamberg, SGU

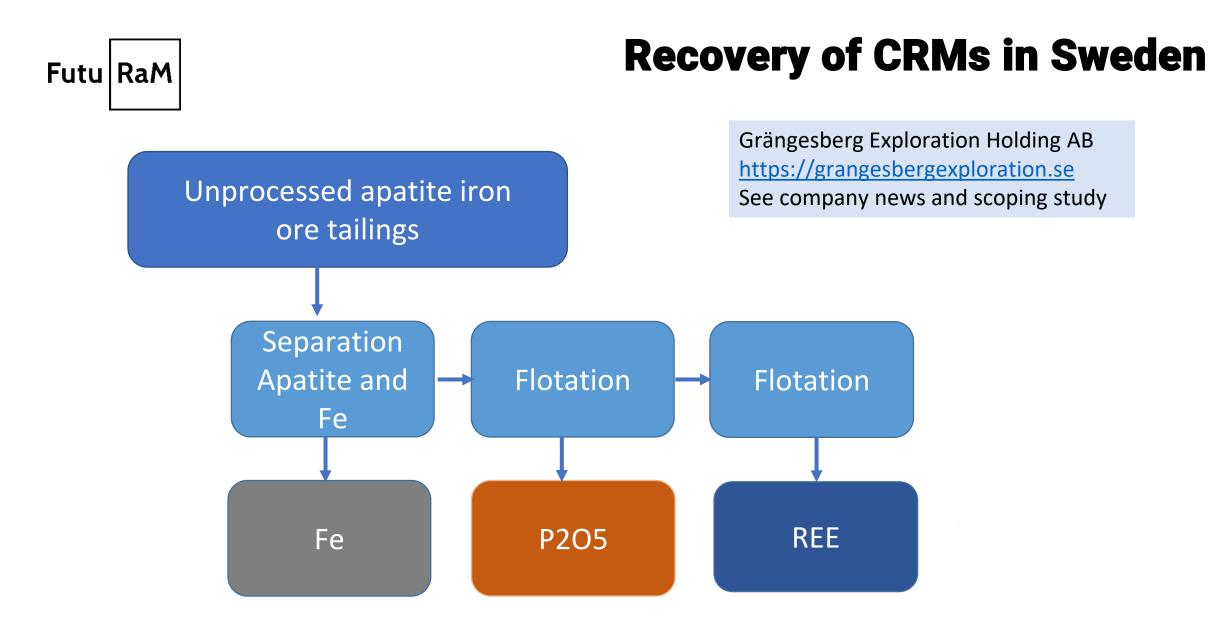
with contributions from Erika Ingvald, Lena Lundqvist, Magnus Johansson, Jonathan Hamisi

> SGU Geological Survey of Sweden

Recovery of CRMs in Sweden

Tailings


< 0.1 Mtonnes


Mission from the government development of UNFC and characterization of mining waste

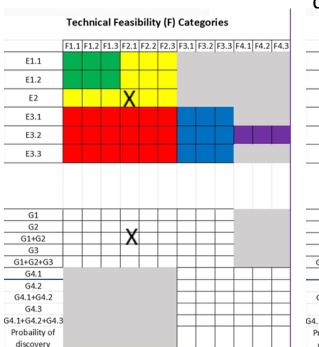
Some data >1000 sites

Futu RaM

- About 70 sites waste sites sampled and characterised
- 14 tailings drill and dense sampling and modeling

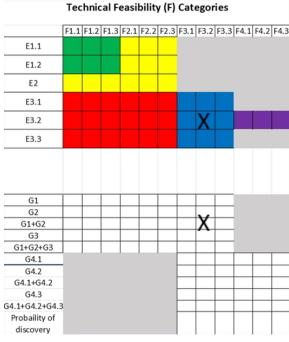
Futu RaM

Recovery of CRMs in Sweden


UNFC determination

Conceptual study

- Resources
 - 3.46 Mtonnes
 - P₂O₅ 5.46%
 - Fe 9.46%
- Technical solution
 P₂O₅ concentrate
- REE technical solution not yet mature


Permits under development

Apatite concentrate 16.3% P -> 304 kt

REE 0.8% in apatite

concentrate

Magnetite 70% Fe 🛛 162kt

6

Recovery of CRMs in Sweden

Conclusion

UNFC is an instrument that in this case allows

- Snapshot in time current project status
- Challenge extract CRM REE, permitting procedure
- Recovery of CRM depends upon recovery of other RM
- UNFC enables comparison between
 - different commodities like P₂O₅, Fe and REE
 - other cases

Thank you! SGU Geological Survey of Sweden

Ronald Arvidsson, Anna Ladenberger and Roger Hamberg Ronald.arvidsson@sgu.se

UNECE Date 2023 I 03 I 23, Online

The Potential to Recover Tungsten from a Tailings Storage Facility in Portugal

Example 2

Rudolf Suppes (Holcim) Soraya Heuss-Aßbichler (LMU)

Potential Recovery of Tungsten in Portugal Introduction

Goal: test application of UNFC to base metal tailings (scientific scoping study) **Scope**: private company

Research question: how is a case rated with CRIRSCO & UNFC?

Materials: peer-reviewed scientific literature, public materials, model assumptions

Assessment & classification approach¹:

define project is characterise material is evaluate status is categorise & classify

¹adopted from: Mueller et al. (2020) https://doi.org/10.1016/j.jclepro.2020.120490

Potential Recovery of Tungsten in Portugal Introduction

General information

- Cabeço do Pião part of Minas da Panasqueira
- Abandoned in 1996 after ~ 90 years of operation
- $V_{\text{tailings}} = 0.7 \text{ mio. m}^3$
- Issues: physical instability, heavy metal pollution & acid mine drainage

Scenarios:

- S0: rehabilitation
- S1: FeWO₄ & ZnS recovery

~ 1 wt %_{tailings}

S2: FeWO₄, ZnS, CuFeS₂, FeS₂ recovery ~ 24 wt %_{tailings}

Potential Recovery of Tungsten in Portugal RESULTS

S1 & S2 are economic (W main economic driver & risk)					
	Communicated Information	CRIRSCO	UNFC		
S0	economically not viable	×			
S 0	raw material potential preserved for future	×			
S1	economic viability (relevant element: W)				
S2	higher returns (additional relevant elements: Cu, S & Zn)				
S0, S1 & S2	externalities (due to current & continued pollution)	×			

Potential Recovery of Tungsten in Portugal Conclusions

 $\checkmark\,$ UNFC is applicable to base metal tailings

• UNFC's strengths compared to CRIRSCO:

- more aspects are considered
- sustainability highlighted

creates transparency

environmental & social benefits are driving factors

UNFC's development potential:

- more sophisticated categorisation on E-axis
- improvement of user guidance

Thank you! JONNE IN LINU WALLERS

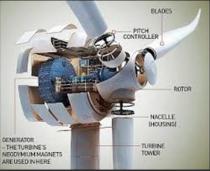
Rudolf Suppes, Soraya Heuss-Aßbichler rudolf.suppes@holcim.com

UNECE Date 23 | 03 | 2023, online

Example 3

Andrea Winterstetter

KRAIBURG TPE

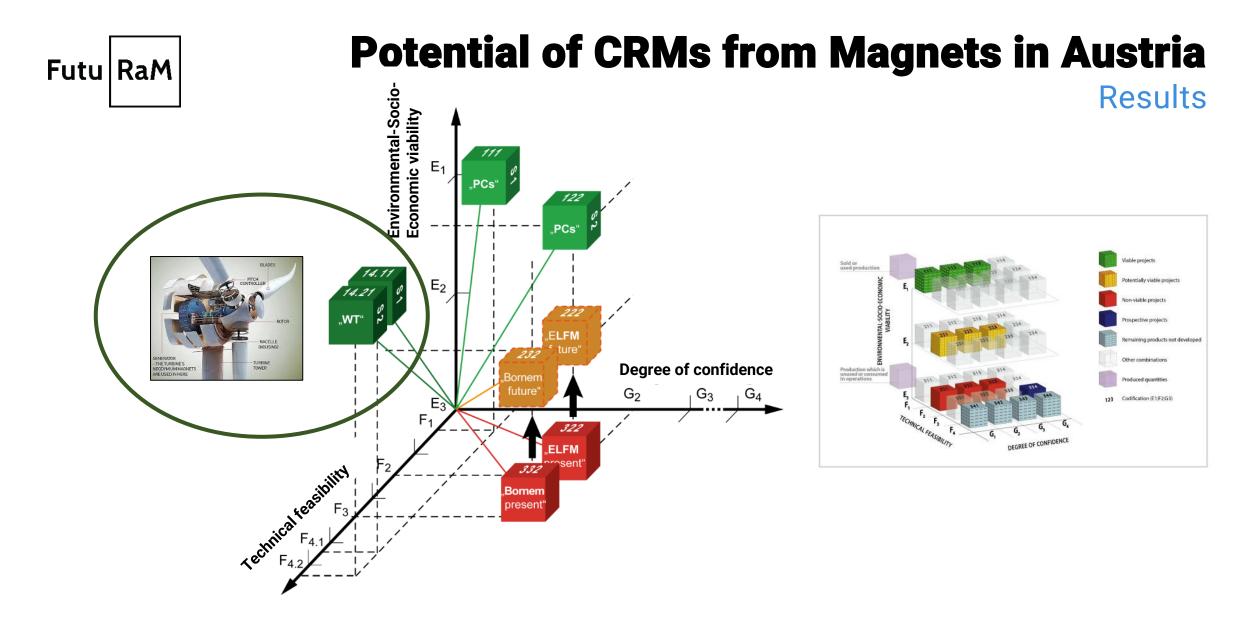


Potential of CRMs from Magnets in Austria Introduction

Compare two scenarios for **future utilization of end-of-life permanent magnets in wind turbines**, in use in Austria (2014)

- Reuse vs Recycling?
- Focus on economic viability and technical feasibility
- Develop suitable management strategies for future waste flows

- Winterstetter, A. 2016. Mines of Tomorrow: Evaluating and Classifying Anthropogenic Resources: A new Methodology Doctor of Science in Civil Engineering PhD Thesis Vienna University of Technology. <u>https://doi.org/10.34726/hss.2016.39327</u>
- Winterstetter, A., et al. (2016a.) "Evaluation and classification of different types of anthropogenic resources: The cases of old landfills, obsolete computers and in-use wind turbines". J. of Cleaner Production. https://doi.org/10.1016/j.jclepro.2016.05.083
- Winterstetter et al. (2021) "The role of anthropogenic resource classification in supporting the transition to a circular economy." J. of Cleaner Production, <u>https://doi.org/10.1016/j.jclepro.2021.126753</u>



Potential of CRMs from Magnets in Austria

Reuse vs recycling of magnets

	Scenario 1 - Reuse	Scenario 2 - Recycling	
Type of deposit	NdFeB permanent magnets in wind turbines in Austria		
Data source	Data on production & installation of wind turbines & their capacity in Austria		
Different options for dismantling	Reuse of permanent magnets	Hydrometallurgical method to extract Nd,Fe,B, Dy & Pr	
Cost	Separating magnets & demagnetization	Separating magnets & demagnetization Rare earth elements extraction from magnet	
Prices for secondary products	Price of used permanent magnets	Prices of REE and metals	

Potential of CRMs from Magnets in Austria

Conclusion

Resource classification has to be performed on a case by case basis:

- 1. Drivers of the project
- 2. Site-specific parameters
- 3. Project-specific parameters
- 4. Systemic context
- 5. Timing of mining

Provides decision support for mining the anthroposphere

- establish inventories of available and accessible anthropogenic resources at regional and national level
- compare different resource recovery projects & scenarios
- makes critical factors & potential barriers visible

Thank you!

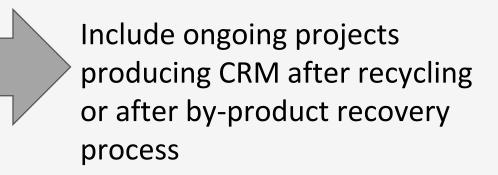
Andrea Winterstetter andrea.winterstetter@kraiburg-tpe.com

UNECE Date 23 | 03 | 2023, online

Example 4

Daniel Monfort

Léane Verhulst BRGM



CRM recycling projects in France

Introduction

- First action after DG GROW request in 2021, map ongoing and potential primary CRM projects in France using UNFC (around 40 sites/projects)
- But we stayed also 2 facts
 - France is already a producer of some CRM as a by-product (In from Zn and Hf from Zr)
 - France is also a CRM producer via recycling (mostly WEEE)

Viable projects in terms of UNFC

Futu RaM

CRM recycling projects in France Potential viable projects

2nd step, evaluate potential viable CRM recycling projects (industrial projects in upscaling process)

- Batteries and WEEE
- Evaluation with publicly accessible data
- Checklist:
 - The degree of maturity of recycling projects.
 - Projects in industrial plants with already the environmental authorizations?
 - Knowledge of the composition of the recycled products/flows
 - Chemistry of batteries, chemistry of permanent magnets, etc.
 - Which capacity to collect the waste streams? Partnership with waste collector?
 - Information about quantities. Expected annual production?

Futu RaM

CRM recycling projects in France

Conclusion

- Projects producing secondary CRMs can be mapped and classed in UNFC terms quite "easily"
- Keep in mind the comparability with primary resources!
- UNFC is a good tool to monitor the progress of projects and which criteria is "blocking": acceptability, feasibility, waste collection...

	Viable projects	Potential viable	Non-viable projects
Primary resources	Quarries and mines exploiting and producing	Active research & exploration permits	Non active projects
Secondary resources	Recycling plants	Recycling R&D projects of industrial upscaling.	

Thank you!

Daniel Monfort & Léane Verhulst d.Monfortcliment@brgm.fr

UNECE Date 23I 03 I 2023, Geneva

