

Federal Ministry
 Republic of Austria
 Agriculture, Forestry, Regions
 and Water Management

Innovative tools in line with methodological aspects for harmonized forest damage assessment in the ECE region

Frank H Koch, USDA Forest Service

Assessing Forest Damage and Disturbance

Scientific-Technical Symposium jointly organized by UNECE, FAO and the Austrian Federal Ministry of Agriculture, Forestry, Regions and Water Management

University of Natural Resources and Life Sciences Vienna, Austria 29-30 September 2022

Introducing "Innovative tools..."

- Chapter 7 in forthcoming "Reporting and Assessment of Biotic and Abiotic Forest Damage and Disturbance in the ECE Region"
- Theme: Innovative methods to accomplish forest damage/disturbance assessment in a <u>harmonized</u> way
- Objectives: Build on existing methods and data with
 - Analytical approaches that everyone can implement similarly
 - Data sources that are available universally <u>or</u> that can be measured or recorded consistently

What issues must be resolved?

- Successful harmonization requires shared understanding about several aspects
- Revisited throughout chapter

Issues of scale

- Reference time period
- Reporting resolution
- Minimum area of damage/disturbance
- Minimum threshold of severity/intensity

Issues of attribution

- Causal agent
- How agents are recorded
- Cases of multiple agents
- Forest context (diversity/geography)

Issues of data

- Direct vs. indirect measurement
- Type of damage/disturbance (e.g., mortality)

Existing harmonization approaches

Largest common denominator approach

(e.g., report total amount or extent of damage/disturbanc e in broad categories)

- Typical approach right now
 - Leaves potentially useful information "on the table" OR
 - Increases reporting burden for individual countries AND
 - Regardless, some countries don't report reliably

Information needs approach

- Ignore current data situation to focus on what is needed
- Innovative methods could close gaps between availability and needs

Adopting a geospatial framework

- Limitations of "largest common denominator" approaches
 - Don't address issues like double-counting
 - Don't really capture trends. What happened before a disturbance? After?
- Large-scope assessments should look at departures from historical patterns: "beyond reference conditions"
- Tracking damage/disturbance geospatially, and preferably through time (e.g., annually), can enable this

Remote sensing (RS) as analytical foundation

Advantages for harmonization

- Wall-to-wall geographic coverage, consistent spatial framework
- Enables time series
- Moderate resolution, multispectral RS data are readily available
- Growing body of research on techniques

Disadvantages

- Indirect measure of forest disturbance/damage
- Not all disturbance/damage is easily detectable
- Identified disturbance/damage occurrences are not usually attributed to a causal agent

RS-based mapping of damage/disturbance

- Data: Moderate-resolution, multispectral satellite imagery (e.g., Landsat) as foundation
- Goal: Large-scope (continental, global) spatial databases of forest damage/disturbance through time
- Enabled by advances in
 - Satellite data availability
 - Analytical approaches and algorithms
 - Cloud computing platforms and workflows

https://landsat.gsfc.nasa.gov/article/unleashingclimate-data-and-innovation-for-more-resilientecosystems/

RS-based mapping of damage/disturbance

 Phased strategy: Map <u>all</u> forest damage/disturbance regardless of cause; <u>attribution</u> is a distinct process step

Increased satellite data availability

- 2008 = watershed moment: entire Landsat image archive became freely available to any user
- Enabled analysis of Landsat time series (LTS) image stacks
- Led to algorithms for exploiting this decadeslong data history
- Evolving approaches also being applied to newer sensors (e.g., Sentinel-2)

https://emapr.github.io/LT-GEE/landtrendr.html

New analytical approaches & algorithms

- **Trajectory** analysis of spectral data on a by-pixel basis
- **Prominent** example: LandTrendr (Landsatbased detection of Trends in Disturbance and Recovery)

Cloud computing platforms & workflows

- Distributed cloud computing platforms enable globalscale geospatial analyses with massive data sets
- Best-known example: Google Earth Engine (GEE)
- Vast data catalog of GEE includes Landsat image archive; MODIS, Sentinel-2, other sensors; climate/ weather; topography; human demography; etc.
- Parallel processing infrastructure = efficient batch computation

Cloud computing platforms & workflows

- Cloud computing platforms can handle complex workflows with different inputs or algorithmic outputs
- Machine learning techniques are artificial intelligence methods increasingly applied to RS data
 - Examples: artificial neural networks, stochastic gradient boosting
 - Technique known as random forests is especially popular
 - Random forests implemented on GEE platform

What can pre-attribution results look like?

• Illustrative example: Senf C; Seidl R. Mapping the forest disturbance regimes of Europe. Nature Sustainability 4, 63-70 (2021) https://doi.org/10.1038/s41893-020-00609-y

Forest disturbance regimes (1986-2016) mapped across Europe

Can also examine temporal trends in these metrics

Causal attribution: ancillary data sources

Causal attribution: summary examples

Schleeweis KG et al. US national maps attributing forest change: 1986-2010. Forests 11, 653 (2020)

https://doi.org/10.3390/f11060653

Senf C; Seidl R. Storm and fire disturbances in Europe: distribution and trends. Global Change Biology 27, 3605-3619 (2021)

https://doi.org/10.1111/gcb.15679

Challenges & opportunities

- With new tools and techniques, loss of potentially meaningful data that occurs with traditional harmonization approaches may be unnecessary
- But a remote sensing foundation comes with <u>challenges</u>
 - Computing resources and data needs are not trivial
 - Some causal agents difficult to capture, especially ones with subtle impacts
 - Cases of causal ambiguity
 - Regional differences in damage/disturbance spatio-temporal patterns
 - Still need to resolve issues of scale, thresholds in particular

Challenges & opportunities

- Remote sensing is not a panacea
 - Fundamentally indirect measurement
 - Cannot detect every meaningful damage/disturbance event
- For this and many other reasons, <u>existing data streams like</u>
 NFIs have tremendous value
- Ultimately, must look toward hybrid approaches that utilize as much available data as possible
 - Advances in cloud computing, machine learning, etc., can also facilitate this
- One final question: How to get buy-in from policy makers on innovative tools when it comes to "official" reporting?

Federal Ministry
 Republic of Austria
 Agriculture, Forestry, Regions
 and Water Management

THANK YOU

Frank H Koch
Research Ecologist & Team Leader for Forest
Health Monitoring Research
USDA Forest Service, Southern Research
Station
Research Triangle Park, North Carolina, USA

Assessing Forest Damage and Disturbance

Scientific-Technical Symposium jointly organized by UNECE, FAO and the Austrian Federal Ministry of Agriculture, Forestry, Regions and Water Management

University of Natural Resources and Life Sciences Vienna, Austria 29-30 September 2022

