Comparison between Clark and Kokic and Bell approaches in winsorization

Romain Lesauvage

Insee, France

Statistical Data Editing
October 6th, 2022
Outline

1 Introduction
2 Winsorization
3 The two methods: Kokic and Bell vs Clark
4 Application to real data: a French survey
5 Conclusion
Table of Contents

1. Introduction
2. Winsorization
3. The two methods: Kokic and Bell vs Clark
4. Application to real data: a French survey
5. Conclusion
Introduction

1. Economic variables with highly skewed distribution very usual in business survey
2. Influential units problems
3. Is there a way to limit the impact of these values in estimators?
4. Main issue: determination of the atypical units

⇒ Winsorization
1 Introduction

2 Winsorization

3 The two methods: Kokic and Bell vs Clark

4 Application to real data: a French survey

5 Conclusion
Winsorization

- **Winsorization**: transformation of the a variable of interest Y into another Y^* defined as:

 $$Y^* = \begin{cases}
 Y & \text{if } Y \leq K_h \\
 \frac{n_h}{N_h} Y + (1 - \frac{n_h}{N_h})K_h & \text{if } Y > K_h
 \end{cases}$$

- We have to fix a value for K_h: this is where different approaches come.
Table of Contents

1. Introduction

2. Winsorization

3. The two methods: Kokic and Bell vs Clark

4. Application to real data: a French survey

5. Conclusion
Kokic and Bell approach

We suppose that we have a stratified sample and note h the quantity depending of the strata h.

$$K_h = -\frac{B}{N_h} + \frac{\mu_h}{n_h - 1}$$

1. Using this K_h, the winsorized estimator extend the HT estimator.
2. Winsorized estimator biased but has the smallest error in estimator the total of Y on average of all possible samples.
3. B is the bias of the minimum winsorized estimator, n_h is the number of units sampled in the stratum h, N_h is the size of population in stratum h and μ_h is the expectation of Y in the stratum h.
How to calculate the bias B?

The bias B is calculated as a zero of the function:

$$F(B) = -B[1 + \sum_h n_h E_h(J^*_h)] - \sum_h n_h E_h(Y^*_h J^*_h)$$

- E_h is the expectation in the stratum h
- $Y^*_h = \left(\frac{N_h}{n_h} - 1\right)(Y_h - \mu_h)$
- $J^*_h = 1$ if and only if $Y_h \geq K_h$

The function can be rewritten as a function of $L = -B$ and computed as a piecewise affine function.
The Clark method works not only for stratified samples, we need auxiliary variables. It’s a generalization of Kokic and Bell method.

1. **Hypothesis:** in each stratum, \(Y_h = \mu_h + \epsilon_h \) (same as Kokic and Bell)

2. \(K_h = -\frac{B}{N_h} + \mu_h^* \) with \(\mu_h^* = E[\min(Y, K_h)] \), difficult to calculate so we need to estimate it by \(\hat{\mu}_h \)

3. Find the zero of the function \(L - E[\sum_{i \in s} \max(\hat{D}_i - L, 0)] \) with \(\hat{D}_i = (Y_i - \hat{\mu}_i)(\omega_i - 1) \), \(\omega_i \) being the weight of unit \(i \).
The two methods: Kokic and Bell vs Clark

Connecting the two approaches

- The two functions used in the two methods can be connected with some hypothesis, so it seems to be the same method...

- ... But there is a main difference: calculation of μ_h, Kokic and Bell propose to use an independent survey/a previous edition of the survey to compute a value that estimate μ_h whereas Clark proposes to find it using a regression.

- Is there a big difference between the two ways of calculate μ_h?
The ESANE system makes it possible to produce structural business statistics in France. This is done through an annual survey, ESA-EAP, of approximately 160,000 companies.

We used the data of the 2020 survey to compare the impact of winsorization with the two methods: Kokic and Bell (KB) and Clark.

In the survey, we make a difference between the companies with only one legal unit (called independent unit) and those with several legal units (called profiled companies).
Results

<table>
<thead>
<tr>
<th></th>
<th>KB</th>
<th>Clark - independant data</th>
<th>Clark - sample</th>
<th>Clark - corr. factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind. units</td>
<td>283</td>
<td>35</td>
<td>1616</td>
<td>1448</td>
</tr>
<tr>
<td>Other</td>
<td>158</td>
<td>28</td>
<td>459</td>
<td>340</td>
</tr>
<tr>
<td>Total</td>
<td>441</td>
<td>63</td>
<td>2075</td>
<td>1788</td>
</tr>
</tbody>
</table>

- $\times 7$ using KB instead of Clark - independant data (preconised solution)
- but $\times 4$ using Clark with other ways of calculate μ_h
Table of Contents

1. Introduction
2. Winsorization
3. The two methods: Kokic and Bell vs Clark
4. Application to real data: a French survey
5. Conclusion
The two methods can be reunited by rewriting the functions we have to use...

... but one main difference : estimation of μ_h

In real data, we see that the method leads to very different results.

Which method is the best ? Simulations to do to try to see which method has the least RMSE.
Thank you!

Contact: romain.lesauvage@insee.fr