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I. Introduction 

Economic variables with highly skewed distribution are very usual in business survey. In this context, we often
face influential units problems. In this work, we assume that measurement errors (gross error, unity error...)
have already been detected and corrected at the editing stage. Influential values are typically very large but
“true”, and their presence in the sample tends to make classical estimators very unstable. The aim of influential
values treatment is to limit their impact, which leads to estimators that are more stable but potentially biased.

Thus, the determination of atypical units is an main issue in business statistics. To do this, we proceed by
winsorization, which is the transformation of a variable of interest  Y into another variable called winsorized
one, noted Y∗.There are two main ways to compute Y∗, we mainly use the so-called type II winsorization which
is such that, for each stratum h,

Y *
={

Y si Y⩽Kh

nh
N h

Y +(1−
nh
N h

)Kh si Y >Kh

The idea is to fix a threshold  Kh from which we modify the value of Y. The question is to determine this
threshold Kh.

We  worked  here  on  the  comparison  between  two  methods  and  their  implementation  in  two  different
programming languages: on the one hand, Kokic and Bell showed in a 1994 paper [1] that the optimal threshold

for a stratified simple random survey is obtained by Kh=−
B

N h

nh
−1

+μ h where B is the opposite of the bias

of the optimal winsorized estimator and μ h is the average of Y in the h stratum obtained by an independent
survey (for example the former edition of the survey),  nh is the number of units of the stratum  h in the
survey and Nh is the number of units in the stratum h in the database. INSEE has developed a macro-SAS
implementing this method. 

On the other hand, Clark in 1995 [2], proposed to compute the L value, defined as -B where B is the bias of the
Kokic and Bell formula, in another way, in a more general context (not only stratified simple random samples),
and this is implemented in the package surveyoutliers. The threshold is then computed in an analogous way by
replacing μ h  by the mean of the winsorized estimator obtained by linear regression.

We propose in this work to show how the formula proposed by Clark can be put in touch with Kokic and Bell
version in the calculation of the optimal bias and to compare the results obtained by the macro-SAS and the R
package, by focusing on the differences in results. Another goal is to see whether or not, it could be simple to
switch from SAS to R in the process of adjustmen in business survey. To illustrate the differences between the
two methods, we use the data from ESA, a French annual business survey [3].



                                                                                              

II. The two methods

A. Kokic and Bell

Kokic and Bell (1994) propose to calculate the thresholds Kh in such a way that they are independent of the
sample  to  which they  are applied and  in  such a way as  to  minimise the squared error  of  the winsorized
estimator, this error being calculated by taking into account the randomness resulting from both the sample
design and the distribution of the variable Y in the population.

Thus, on average over all the samples and over the possible values that Y can take in these samples, i.e. over all
the situations to which the survey data can confront us, the winsorized estimator has the lowest possible mean
square error.

Kokic and Bell thus seek to calculate a winsorized estimator whose properties extend those of the Horvitz-
Thompson estimator. The latter is indeed unbiased insofar as, if all possible samples of the population were
drawn and the Horvitz-Thompson estimator of the total of Y were calculated in each of them, the average of
these estimators weighted by the probability that each sample has of being selected would be exactly equal to
the total of Y.

The winsorized estimator calculated with the Kokic and Bell thresholds is no longer unbiased, but it has the
smallest error in estimating the total of Y on average over all possible samples and over all possible values of Y
in those samples.

Kokic and Bell then show that in this case the Kh thresholds are asymptotically equivalent in each stratum to

−
B

N h

nh
−1

+μ h ,  where  μ h is  the  expectation  of  Y  in  stratum h  and  B is  the  bias  of  the  minimum

winsorized estimator. 

In the following formulas, the notation Y hi representing the value of Y for individual i in stratum h will be

simplified by Y h . The same will apply to other quantities.

This bias is calculated as the point that cancels the function F defined by :

F(B)=−B[1+∑
h

nh Eh(Jh
*
)]−∑

h

nhEh(Y h
* J h

*
)

with Eh the expectation according to the distribution of Y in stratum h, Y h
*
=(

N h

nh
−1)(Y h−μh)  and J h

*

the indicator which is 1 if Yh is greater than Kh. 

To calculate the optimal value of B in practice, it  can be noted that  by positing L=-B and estimating the
necessary  quantities  by  the  values  on  an  independent  sample,  the  function  F  is  re-written

F̂(L)=L[1+∑
h

(
nh
mh

)∑
j

mh

I(
~
Y j

h
> L)]−∑

h

(
nh
mh

)∑
j

m h ~
Y j

h I (
~
Y j

h
>L) where mh is  the number of individuals

in stratum h from a previous survey, 
~
Y j

h
is the value of Y* for the unit j in stratum h in the same survey, and

I represents the indicator.



                                                                                              

One can then notice that the function is affine and continuous by pieces with jumps for each value of Yk

observed and one can thus estimate L (and B) optimum by linear interpolation between the last rank where F is
negative and the first where it becomes positive.

This method is implemented at INSEE by two macro-SAS which take as input a table corresponding to the
sample, and a table corresponding to a set of Y values supposed to be independent of the sample.

B. Clark

The  surveyoutliers  package  allows  the  calculation  of  optimal  cut-offs  for  a  variable  in  a  more  general
framework than the case of the stratified simple random survey studied by Kokic and Bell. It is based on the
paper by R. Clark (1995), which is based on the case where auxiliary variables are available and where, in
reality, a regression relationship between our variable of interest Y and the auxiliary variables is given as input.
The results of Kokic and Bell are thus extended to the case of a GREG (generalized regression) estimator,
which allows us to obtain results for other designs than stratabased SAS.

The hypothesis of Kokic and Bell can in fact also be integrated in this case: it can be rewritten as the hypothesis
that  within each stratum,  the value of  Y follows a law of  the type  : Y h=μh+ϵ h where  ϵ h is  white

Gaussian noise.

By noting Y *
=min(K h ,Y ) , Clark shows that the values Kh verify asymptotically  −

B
Nh

nh
−1

+μ h
*

 with

μ h
*
=E [min(K h ,Y )] which in practice we will  try to estimate.  In addition,  the bias  B is  calculated as

B=∑
i

(ω i−1)(μ i
*
−μ i) where μ i

*
=E(Y i

*
) , μ i=E(Y i) and ω i is the weight of the unit i, which

is assumed to be equal to 
N h

nh
in the case of a stratified simple random survey.

Since  μ i
* is  difficult  to  calculate,  Clark  proposes  a  rewriting  of  the  problem,  posing

Di=(Y i−μ i)(ω i−1) and  L=-B,  we can show that  we have B (L)=−E[∑
i∈s

max(Di−L,0)]  which

can be estimated by B̂ (L)=−E[∑
i∈s

max(D̂i−L,0)] with D̂i=(Y i−μ̂ i)(ω i−1) .

Finally, we can solve the problem by finding L that satisfies ψ (L)=L+ B̂(L)=0

In fact, this formula is similar to the method detailed by Kokic and Bell in the case of  a stratified simple
random survey, for them we have : 

F̂(L)=L[1+∑
h

(
nh
mh

)∑
j

mh

I (
~
Y j

h
> L)]−∑

h

(
nh
mh

)∑
j

m h ~
Y j

h I (
~
Y j

h
>L)

This becomes with Clark's notations :

F̂(L)=L[1+∑
h

(
nh
mh

)∑
j

mh

I ( D̂i−L≥0)]−∑
h

(
nh
mh

)∑
j

mh

D̂i I (D̂i−L≥0)

Putting the terms together, we have :

F̂(L)=L+∑
h

(
nh

mh

)∑
j

mh

(L−D̂i) I (D̂i−L≥0)

This gives us :



                                                                                              

F̂(L)=L−∑
h

(
nh
mh

)∑
j

mh

(D̂i−L) I (D̂i−L≥0)=L−∑
h

(
nh
mh

)∑
j

mh

max(D̂ i−L,0)

With the assumption mh=nh , we therefore find F̂(L)=ψ (L)  : the same function must therefore be 

cancelled.

The package therefore proposes an implementation of this method via two functions optimal.onesided.cutoff
and optimal.onesided.cutoff.bygroup depending on whether you wish to work on one or several domains. These
functions take as parameters :

➢ A formula that explains Y as a function of auxiliary variables, here we take Y ~ id_strate

➢ A dataset that must necessarily contain two variables named piwt, which is the inverse of the selection
probability, and gregwt which is the weight to be used in the regression. In our case, we will assume

that the two variables are equal to the weight 
N h

nh

➢ Possibly the name of the domain variable (for the multi-domain version)

➢ In the event that we do not have mh=nh , a historical.reweight parameter to weight the formula by

nh

mh

where needed.

➢ Other optional parameters that can be modified in particular if we have succeeded in estimating the

μ i
*

Note: Unlike SAS macros, the R package takes as input a single data set corresponding to the sample. To
winsorise as recommended in the paper by Kokic and Bell, it is therefore necessary to launch the calculation of
the thresholds on the set  of independent  observations  and to deduce, via  a code (external  to the package)
corresponding to the formula mentioned in the first  part, the value of the Y* on our sample or  to use the
historical.reweight parameter.

There are two major differences between the package and the macro-SAS from a programming point of view:

1. The estimate of  μ h
*
=E [min(K h ,Y )]  which  is  assimilated  to  ȳh under  SAS while  a  linear

regression under R is used.

2. The interpolation method: simple linear interpolation in SAS versus using the uniroot function in R.



                                                                                              

III. Main results

The two methods are compared1 on the dataset from ESA 2020. Winsorization is implemented on the one hand
on independent legal units and on the other hand on legal units that belong to profiled enterprises.

The aim is to compare the number of winsorized units in the two methods and to analyse the differences
obtained. We will test three scenarios:

• Calculate the thresholds on an independent data set.

• Calculate thresholds on the sample.

• Calculating the thresholds on the sample with the historical.reweight parameter.

We have at our disposal 2,309,714 independent legal units (LU), distributed in 2,122 strata and 140,969 legal
units belonging to profiled enterprises (PE LU) distributed in 2,213 strata for the independent data set. In the
sample we have 24,291 independent legal  units in 1,556 strata  and 5,198 legal units belonging to profiled
enterprises in 590 strata.

The results are as follows:

 SAS R – independent
data

R - sampling R – sampling +
hist.reweight

Independent LU 283 35 1 616 1 448

PE LU 158 28 459 340

Total 441 63 2 075 1 788

It can therefore be seen that there are 7 times fewer winsorised units in the surveyoutliers package than in the
SAS macro currently used when using the independent data set. 

In detail, the thresholds are lower in the R package for only 3 strata of independent legal units and 4 strata of
legal units of profiled enterprises. The threshold therefore tends to be higher in the case of the package (on
average, it is 4 times higher), compared to the SAS macro. 

On the contrary, when using the sample in the R package, we have 5 times more winsorised units than with the
SAS macro. Using a correction factor for the weights based on the independent sample reduces this to only 4
times more, but there is still a significant difference between the two methods (SAS and R).

IV. Conclusion

To  conclude,  the  switch  from  the  SAS  macro  to  the  R  package  cannot  be  done  automatically  without
precaution. Changing the tool changes the results significantly, especially in terms of the number of winsorised
units. 

In order to determine which method is better, the study should be continued by comparing the results obtained
in each case in terms of bias and variance and looking at what provides the best results.

1Each time, a winsorization is performed by group (APE 3 positions) and the thresholds are calculated from the Y of the sampling frame. In the SAS

macro, the Nh correspond to N̂h=∑
i∈h

wi and nh  is the number of respondents in stratum h. In the R function, the same procedure is followed by

putting this information as input.
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