Univariate and multivariate goodness (of fit) of imputation

Maria Thurow¹, Florian Dumpert², Burim Ramosaj¹, Markus Pauly¹

¹TU Dortmund University, ²Federal Statistical Office of Germany

October 2022 — UNECE Expert Meeting on Statistical Data Editing

Agenda

- 1 Motivation
- Evaluation Methods and Simulation Setup
 - Missing Settings
 - Imputation Methods
 - Evaluation Methods
 - Simulation Setup
- 3 Simulation Results
 - Univariate Analysis
 - Multivariate Analysis
- 4 Conclusion

The Reason for the Study

Challenge

- missing and implausbile values
- complete data sets needed

Solution

imputation

Open question

- Which method for which goal?
 - → Simulation study

A more detailed description of the study can be found in Thurow et al. (2021).

Missing Settings

Missing Completely at Random (MCAR)

- Missing of values independent of other observed values
- In our simulation: prodNA from missForest (Stekhoven and Buehlmann, 2012)

Missing at Random (MAR)

- Missing of values depends on observed values of the data set
- In our simulation:
 - Insert missing values according to predefined logic in three variables
 - Insert missing values into remaining variables according to the MCAR mechanism
 - ⇒ Altogether MAR

Imputation Methods

Single Imputation

- Naive Imputation
- Random Forest based imputation (missRanger, Mayer, 2019)

Multiple Imputation (m = 5)

- Imputation based on the EM-Algorithm (Amelia, Honaker et al., 2011)
- Multiple Imputation by Chained Equations (mice, van Buuren and Groothuis-Oudshoorn, 2011)
 - Random Forest based imputation (Mice.RF)
 - Predictive Mean Matching (Mice.Pmm)
 - Normal (Bayesian) model (Mice.Norm)

Evaluation Methods

Univariate Analysis

- Imputation Error estimates (NRMSE & PFC)
- p-values of permutation tests based on the Kolmogorov-Smirnov (KS) Statistic for single variables

Multivariate Analysis

KS Statistic of linear combinations of the variables of the data set

Data Set

FORSCHUNGSDATENZENTREN

Structure of Earnings Survey 2010

- anonymized data set (Campus File)
- -25,974 observations
- 33 variables

We slighty modified the data set before the simulation.

Simulation Setup

Simulate missing values

- 1%, 5% and 10% missing values
- MCAR and MAR mechanism

Imputation

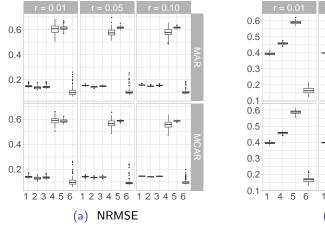
- Imputation of missing values using the 6 methods.
 - $\Rightarrow 22$ imputed data sets

Calculation of the measures

- Calculate NRMSE, PFC, p-values and KS statistic of the linear combinations
- Combine values in case of multiple imputation according to Rubin (2004)

100 iterations each per missing mechanism and rate

Univariate Analysis – Predictive Accuracy



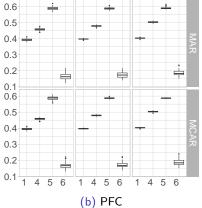


Figure: Boxplots for the imputation accuracy.

1: Amelia, 2: Mice.Norm, 3: Mice.Pmm, 4: Mice.RF, 5: Naive, 6: missRanger

Univariate Analysis – KS Statistic

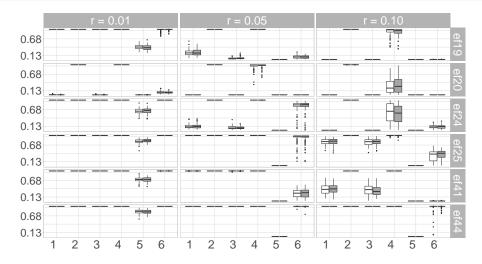


Figure: Boxplots for the **p-values** of the **Kolmogorov-Smirnov statistic**.

1: Amelia, 2: Mice.Norm, 3: Mice.Pmm, 4: Mice.RF, 5: Naive, 6: missRanger

Multivariate Analysis

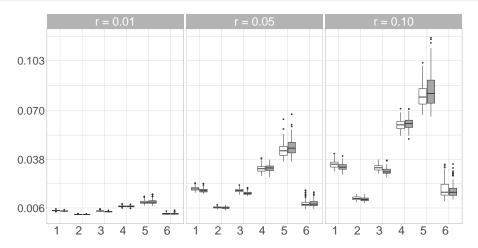


Figure: Pair of boxplots for the **maximum** values of the **Kolmogorov-Smirnov statistic** for the **linear combinations**.

1: Amelia, 2: Mice.Norm, 3: Mice.Pmm, 4: Mice.RF, 5: Naive, 6: missRanger

Summary of the Results – Univariate Analysis

NRMSE & PFC

- Lowest median values for missRanger
- Highest values for Naive and Mice.RF approach
- Amelia, Mice.Norm and Mice.Pmm only slightly worse than missRanger for the NRMSE

KS Statistic

- High and stable p-values for Mice.Norm
- Low p-values for most of the other methods at $10\,\%$ missing values
- For some variables: High and stable p-values for missRanger

Summary of the Results – Multivariate Analysis

KS Statistic of Linear Combinations

- Smallest values for Mice.Norm and missRanger
- Lower variability for Mice.Norm
- Highest values for the Naive imputation

Conclusion

Imputation methods perform different depending on the goal:

Distributional accuracy

- Good reproduction of the (multivariate) distribution
- Mice.Norm performs best in the simulation

Predictive Accuracy

- Good reproduction of the actual missing values
- missRanger performs best in the simulation

References

- Honaker, J., King, G., and Blackwell, M. (2011): "Amelia II: A Program for Missing Data". *Journal of Statistical Software* 45.7, pp. 1–47.
- Mayer, M. (2019): missRanger: Fast Imputation of Missing Values. R package version 2.1.0.
- Rubin, D. B. (2004): *Multiple Imputation for Nonresponse in Surveys*. Vol. 81. John Wiley & Sons.
- Stekhoven, D. and Buehlmann, P. (2012): "MissForest non-parametric missing value imputation for mixed-type data". *Bioinformatics* 28.1, pp. 112–118.
- Thurow, M., Dumpert, F., Ramosaj, B., and Pauly, M. (Nov. 2021): "Imputing missings in official statistics for general tasks our vote for distributional accuracy". *Statistical Journal of the IAOS* 37.4, pp. 1379–1390.
- van Buuren, S. and Groothuis-Oudshoorn, K. (2011): "mice: Multivariate Imputation by Chained Equations in R". *Journal of Statistical Software* 45.3, pp. 1–67.

Acknowledgement

The figures on slide 9 and 10 are reprinted from Statistical Journal of the IAOS, Volume 37, Thurow, M., Dumpert, F., Ramosaj, B. and Pauly, M., Imputing missings in official statistics for general tasks - our vote for distributional accuracy, Pages 1379 – 1390, Copyright 2021, with permission from IOS Press. The publication is available at IOS Press through http://dx.doi.org/10.3233/SJI-210798.