

Discover validation rules in data with 'validatesuggest'

Olav ten Bosch, Edwin de Jonge, Mark van der Loo *Statistics Netherlands*

UNECE Workshop on Statistical Data Editing (SDE), Oct. 2022

Contents

- Need and use of Data validation
- An ecosystem for (inter)national data validation
- A data-driven approach
- Implementation in 'validatesuggest'
- Wrap up

Data validation: the problem

- Data quality in official statistics tends to vary over time
- Data, organisations, processes and systems change over time and may encounter *unexpected* data dynamics
- If not detected in time this may lead to costly
 recalculations, retransmissions (data ping pong) or –
 worse undetected errors
- Problem grows with new, more volatile data sources
- Data needs to be validated before being used

Data validation: the (theoretical) solution

- Agree on rules between data producer and consumer
- ESS: agree in statistical working groups
- Validate data against rules on both sides

But:

- How to define meaningful rules?
- How to maintain them?

ESS Validation principles:

- 1. The sooner, the better
- 2. Trust but verify
- Well-documented and appropriately communicated validation rules
- 4. Well-documented and appropriately communicated validation errors
- 5. Comply or explain
- 6. Good enough is the new perfect

Validation rule ecosystem (1)

The 20 main types of validation rules in the ESS and their characteristics

Rule type		Default	Validation level					CDNAV	Micro	Severity level			
		Default	0	1	2	3	4	5	SDMX	data	E	w	1
(EVA) Envelope is Acceptable	Х		Х						Х	Х	Х		
(FLF) File Format	X		Х						Х	X	Х		
(FDD) Fields Delimiter	(X)	","	Х						X	X	Х		
(DES) Decimals Separator	(X)	"."	Х						X	X	Х		
(FDT) Field Type	X		X	(X)					(X)	X	X		
(FDL) Field Length	X		X						X	X	X		
(FDM) Field is Mandatory or empty			Х	(X)					(X)	X	Х	(X)	
(COV) Codes are Valid	(X)			X					(X)	X	X	(X)	
(RWD) Records are Without Duplicates	(X)	Key		X					Х	(X)	Х		
(REP) Records Expected are Provided	\vdash			Х	Х					X	Х	(X)	
(RNR) Records' Number is in a Range	X	>=1		X	(X)					Х	Х	(X)	(X)
(COC) Codes are Consistent				X	X				(X)	Х	Х	(X)	
(VIR) Values are in Range		>=0		X	X				(X)	X	X	(X)	(X)
(VCO) Values are Consistent				X	X	X	X	X		X	X	(X)	(X)
(VAD) Values for Aggregates are consistent with Details	(X)	=		X	X						Х	(X)	(X)
(VNO) Values are Not Outliers				X	X						(X)	X	(X)
(VSA) Values for Seasonally Adjusted data are plausible				X	X						X	(X)	(X)
(RRL) Records Revised are Limited					X					(X)	(X)	X	(X)
(VRT) Values are Revised within a Tolerance level					X					(X)	(X)	X	(X)
(VMP) Values for Mirror data are Plausible						Х					(X)	X	(X)

Validation rule ecosystem (2)

How to start a set of validation rules?

Traditionally extracting rules from:

- Domain experts: implicit domain knowledge
- Production systems: **solidified** implicit knowledge (indirectly from domain experts)

However:

- Can we expand and complement current rule sets?
- What if we have a new data source?

Idea: use the data as a starting point

A data-driven approach to data validation (1)

- Infer rules from the data: data 'suggests' rules
- Start from a *clean* or slightly dirty dataset
- More data ~=> more knowledge ~=> better rules
- Suggest rules typical for official statistics, taken from existing validation rule ecosystem (ESS and cookbook)
- Suggest rules that are human-readable
- Suggest rules to the rule developer / maintainer, to be interpreted before used in production

A data-driven approach to data validation (2)

- For timeseries data rules may depend on the time period in data (e.g. growth rate)
- Rules suggestions should allow for tolerances
- Advantage over ML approaches: rules are explicit, understandable, explainable and use existing rule terminologies

The R-package validate

Manually defined rules

```
# Range limits:
Age >= 0
Age <= 120
Working_hours >= 0
Working_hours <= 100

# Some checks between variables:
if (Married > 0) Age > 18
if (Working_hours > 0) Employed > 0

#Such a rule depends on country legislation:
if (Age > 65) Working_hours = 0

# ID must be unique
any(duplicated(ID)) == FALSE
```

Data

^	ID [‡]	Age [‡]	Married [‡]	Employed [‡]	Working_hours
1	1	36	FALSE	TRUE	40
2	2	40	TRUE	TRUE	40
3	3	25	FALSE	FALSE	0
4	4	31	FALSE	TRUE	20
5	5	62	TRUE	TRUE	43
-	-		TOLIE	TRUE	41

Summary

confront

Per rule

Dashboard: data & results

The R-package validatesuggest

https://github.com/data-cleaning/validatesuggest

Manually defined rules

```
# Range limits:
Age >= 0
Age <= 120
Working_hours >= 0
Working_hours <= 100

# Some checks between variables:
if (Married > 0) Age > 18
if (Working_hours > 0) Employed > 0

#Such a rule depends on country legislation:
if (Age > 65) Working_hours = 0

# ID must be unique
any(duplicated(ID)) == FALSE
```

Data

*	ID ‡	Age [‡]	Married [‡]	Employed [‡]	Working_hours [‡]
1	1	36	FALSE	TRUE	40
2	2	40	TRUE	TRUE	40
3	3	25	FALSE	FALSE	0
4	4	31	FALSE	TRUE	20
5	5	62	TRUE	TRUE	43
	-		TOLIE	TRUE	

- (a) Positivity checks
- (b) Range checks
- (c) Checks on na: whether a variable may contain nas
- (d) Checks on uniqueness
- (e) Type checks

Compare

improve

suggest all()

and

- f) Ratio checks:
- (g) Discovery of conditional rules

Suggested rules

check for positivity

```
ID >= 0
Age >= 0
Working hours >= 0
# check the range of variables
in range (ID, 1, 25)
in range (Age, 17, 125)
Married %in% c(TRUE, FALSE)
Employed %in% c(TRUE, FALSE)
in range (Working hours, 0, 58)
# check the type of variables
is.complete(ID)
is.complete(Age)
is.complete(Married)
is.complete(Employed)
is.complete(Working hours)
```

Ratio checks and conditional rules

Ratio checks:

Only variables that are (enough) correlated are considered (threshold)

Conditional rules:

- Unsupervised ML: association rules and CART
- Checks co-occurrence frequency of values
- Direction of causality derived from occurrence of other values

Retailer dataset (fictitious)

ize ‡	incl.prob [‡]	staff [‡]	turnover [‡]	other.rev [‡]	total.rev [‡]	staff.costs [‡]	total.costs [‡]	profit [‡]	vat [‡]
c0	0.02	75	NA	NA	1130	NA	18915	20045	NA
c3	0.14	9	1607	NA	1607	131	1544	63	NA
3	0.14	NA	6886	-33	6919	324	6493	426	NA
c3	0.14	NA	3861	13	3874	290	3600	274	NA
c3	0.14	NA	NA	37	5602	314	5530	72	NA
c0	0.02	1	25	NA	25	NA	22	3	NA
c3	0.14	5	NA	NA	1335	135	136	1	1346

Wrap-up

- Rule disovery and maintenance is a problem
- A data-driven approach to validation rule management
- Uses existing (inter)national rule ecosystems
- Supports rule developer with explainable and interpretable rules derived from data
- 'Validatesuggest': positivity checks, range checks, NA, uniqueness, type checks, ratio checks, conditional rules
- Concept can be extended to support more rules
 => Demo.....

Questions, ideas, suggestions

Olav ten Bosch <u>o.tenbosch@cbs.nl</u>

Edwin de Jonge <u>e.dejonge@cbs.nl</u>

Mark van der Loo <u>mpj.vanderloo@cbs.nl</u>

@olavtenbosch

@edwindjonge

@markvdloo

and keep an eye on:

awesomeofficialstatistics.org

