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I. Introduction  
 
A. Towards our new production system 
 
1.  Statistics Netherlands is working on a new integrated uniform production system for business statistics.  
The main goals of this renewal program are more flexible output, a more agile and efficient production process, 
and facilitating more possibilities for innovations and further developments. These goals align with the need for 
more responsive output development and innovation, an efficient and future proof production process, ready for 
all kinds of data sources, and an increasing demand for new data, against limited internal resources. Our current 
processes are not agile enough to be able to respond timely to new developments and to new user needs. Agility 
is necessary, knowing that the complexity of economic phenomena increases, among others because of 
globalization and intertwining of industries. The current chain of economic statistics is designed in particular for 
current (mainly Eurostat) requirements. With the new integrated uniform production system the current high 
production workload will be reduced, so that staff can focus more on further innovation of processes and output.  
 
2. Our innovation program started at the end of 2019 and is intended to run for five years. The program 
balances innovation, reuse of best practices and stepwise implementations. The innovations are based on the 
program principles in combination with applied methodology that is elaborated and tested in Proofs of Concept. 
The reuse of best practices is a co-creation with business and agile IT teams in order to realize standardized 
coherent models and common tools. The implementations take place in small steps instead of a big bang. The 
visible results encourage staff and the immediate feedback contributes to continuous further improvements. 
 
3. Important aspects of the new production system are generalized modular building blocks with 
customizable settings (also reducing IT legacy burden) and the use of automatic data editing across multiple data 
sources (in addition to top-down manual data editing). For this modular setup, use is made of a suite of R packages 
for data editing, including validate, errorlocate and simputation. In the proposed new production 
system, automatic data editing will be performed not only within individual statistics, but also in an integrated 
manner for clusters of related statistics. This results in more consistent output across statistics and with National 
Accounts. It will also result in more efficiency because of the extra data available for business units and therefore 
the possibilities to identify additional rules for editing. 
 
B. General principles of the new production system 
 
4. In the development of the new production system, we started from the following eight principles. Fully 
implementing these principles in production for all business statistics is ongoing work that will take many years. 
In a companion paper by the same authors (Vaasen-Otten et al., 2022) the principles are described in more detail. 



 
                                                                                               
 
 

(1) We process our input automatically and immediately up to provisional output: 
Input data from primary observations (questionnaires) and secondary sources (registers, registrations, 
web scraping and big data) are processed automatically, up to and including provisional output; 
 

(2) We measure quality automatically and thus direct the manual work: 
We continuously measure quality in an automated manner. We do this in the automated process steps as 
well as in the remaining manual work, so we can focus on actions that have the highest impact on the 
improvement of quality. For example, editing first takes place as much as possible automatically, where 
score functions are automatically calculated to measure the quality; 
 

(3) We make our data consistent as early as possible: 
Resolving errors as early as possible ensures a streamlined and efficient process. This prevents (multiple) 
processes further down the chain from being affected by these errors and prevents earlier process steps 
having to be performed again. Also, we prevent similar process steps from being performed multiple 
times by placing them as early as possible in the process. In the pursuit of consistency, the available data 
are therefore related as early as possible in the process; 
 

(4) We share all our data, right from the start: 
As soon as data arrives, it is immediately standardized, linked and made available to others. This concerns 
both primary data and secondary data. Availability of data is on a need-to-know basis; 
 

(5) We centrally manage all our (population) frames, which are the basis of our statistics: 
The (population) frames are centrally managed and made available for all units required to make our 
statistics. By central we mean in one place, but this may differ per frame. The (population) frames are 
accessible to everyone. The statistical units used for coordination are determined (limited set) and all 
incoming data is linked to those units; 
 

(6) We have fully standardized our processes, methods, data and IT: 
This principle consists of the following parts: 

 All our processes are centrally described and coordinated in order to obtain optimal consistency; 
 The metadata of all data is centrally described and managed; 
 We work with coordinated statistical units; 
 We log all our actions and this information is also available for further process optimization; 

 
(7) Our processes, methods, data and IT are modular: 

To be able to respond flexibly to new developments, our processes, methods, data and IT are modular, 
according to the Generic Statistical Business Process Model (mainly GSBPM phases 5-Process and 6-
Analyse; https://statswiki.unece.org/display/GSBPM). An example is working with standard generic 
automatic editing modules, which are controlled by rules and can thus be quickly and flexibly adapted to 
specific situations; 
 

(8) We resolve manual corrections the following iteration in the standard process: 
Solutions for manual corrections that are necessary to improve quality, are incorporated in the next 
iteration in the standard process if possible, by adjusting sources, metadata, rules, parameters, 
questionnaires, and so on. This concerns, for example, frequently occurring manual corrections of data 
or inconsistencies between sources. This means we strive for a learning process. 

 
C. Contents 
 
5. The main focus of this paper is the automatic data editing with multiple data sources we intend to use in 
the new production system. Suppose that several micro datasets are available for business statistics, with some 
overlap between the units that are observed in each dataset. Furthermore, suppose that a number of common 
variables can be derived from these datasets, i.e., variables that can be compared directly across datasets because 
their definitions are sufficiently aligned so that, in the absence of measurement errors, the same unit should have 
approximately the same value in each dataset. The remaining variables cannot be compared directly across 
datasets, but many of them are in turn related to one or more common variables by edit rules. Rather than editing 



 
                                                                                               
 
each dataset in isolation, it seems advantageous to confront the microdata in these different sources at an early 
stage of the statistical process, as this may increase the overall quality of the edited data. Moreover, from the 
perspective of a statistical institute as a whole it may be more efficient and effective to identify inconsistencies 
between different datasets as soon as possible, and either resolve or explain them. Otherwise the underlying data 
problems may be resolved only partially and independently at several places in the office, which could create 
further inconsistencies that have to be addressed later, e.g., during the production of National Accounts. 
 
6. The focus of this paper is specifically on ways to use the information on common variables during 
automatic editing. The use of common variables during top-down interactive editing is discussed in the 
companion paper Vaasen-Otten et al. (2022). The remainder of the present paper is organized as follows. Before 
addressing the problem of automatic editing across multiple data sources in Section III, we first give a brief 
review of existing methods for automatic editing of a single dataset in Section II. In Section IV, we discuss the 
use of a score function for identifying units with large inconsistencies between data sources, for which automatic 
editing may not be effective. Finally, the main conclusions are given in Section V. 

 
II. Automatic editing: Review of existing methods 
 
7. A widely used method for automatic editing consists of deductive correction. This approach is mostly 
based on correction rules (IF-THEN rules) that describe explicitly which adjustments have to be made to which 
variables under which conditions. As an example, consider the following rule that attempts to correct so-called 
thousand errors in current turnover values by looking at suspiciously large growth rates: 

IF (turnover_current / turnover_previous > 300) THEN (turnover_current := turnover_current / 1000). 

Deductive correction is most effective when it is used to correct errors with a systematic cause (De Waal et al., 
2011). Its main advantage is that it allows a user to control precisely which adjustments are made to the data. If 
it is possible to translate the way subject-matter experts resolve data problems into IF-THEN rules, then deductive 
correction will yield edited data that resemble data that were edited by subject-matter experts. The main 
disadvantage of this approach is that a large and complicated set of correction rules may be required in practice 
to account for all possible situations that can occur. Such a large set of correction rules would be difficult to 
design and maintain (Chen et al., 2003). 
 
8. For errors without a known cause, automatic error localization is often based on the paradigm of Fellegi 
and Holt (1976). This requires the specification of a set of edit rules which describe relations between variables 
in the dataset that should hold if the data are error-free. According to the Fellegi-Holt paradigm, the smallest 
possible subset of variables should be identified as erroneous for which it is possible to impute new values such 
that all edit rules are satisfied. More generally, so-called reliability weights can be assigned to distinguish between 
variables that likely contain more (lower weight) or fewer errors (higher weight). The error localization problem 
is then solved by minimizing the sum of reliability weights of the erroneous variables. Mathematically, this 
problem can be written as a mixed-integer programming problem, for which standard algorithms are available 
(De Waal et al., 2011; Van der Loo and De Jonge, 2018). 
 
9. From a theoretical point of view, error localization based on the Fellegi-Holt paradigm is expected to 
work well when all errors affect one variable at a time and occur independently of each other (Liepins, 1980). 
With the application to multiple data sources in mind, this might limit its usefulness. Inconsistencies between 
data sources could indicate systematic issues that involve multiple variables. For instance, the reported values in 
one source might erroneously refer only to part of a unit and therefore be systematically smaller than values 
reported in other sources. This type of error is not likely to be identified correctly using the Fellegi-Holt paradigm. 
 
10.  To address the above limitation of the Fellegi-Holt paradigm, Scholtus (2016) and Daalmans and 
Scholtus (2018) proposed a generalization of this paradigm. Under this generalized paradigm, the (weighted) 
number of edit operations applied to a unit is minimized instead of the (weighted) number of erroneous variables. 
Here, an edit operation can be any operation that changes the values of one or more variables to new values that 
are a linear combination of the original values and zero, one or more free parameters. A set of admissible edit 
operations has to be selected beforehand. This set is application-specific and could be based on corrections that 
are commonly applied by subject-matter experts during interactive editing. Mathematically, the error localization 
problem with edit operations can still be written as a mixed-integer programming problem and solved in the same 



 
                                                                                               
 
way as before. The original Fellegi-Holt paradigm can be seen as a special case of this approach, for a particular 
choice of admissible edit operations (Scholtus, 2016). 
 
11. From a simulation study, Daalmans and Scholtus (2018) concluded that edit operations can be useful as 
an extension to the error localization problem mainly if a user chooses edit operations that correspond to 
systematic errors that occur relatively often in the data. Like correction rules, edit operations aim to mimic how 
a subject-matter expert would handle particular data issues. With edit operations, the choice whether or not to 
apply a correction and the restriction that the corrected data have to be consistent with the edit rules are both 
handled by the error localization algorithm, which might make this approach more attractive than deductive 
correction, as the design and maintenance are less demanding. On the other hand, this approach does not provide 
users with the same level of control over which corrections are made during automatic editing, and users may 
perceive an error localization method as more of a ‘black box’ than using explicit correction rules. 
 
12. In practice, deductive correction and error localization are often applied in tandem. A typical automatic 
editing process may contain the following steps in order (Pannekoek et al., 2013; GSDEM, 2019): 

(1) deductive correction of systematic errors; 
(2) error localization of other errors; 
(3) imputation of missing values; 
(4) adjustment of imputed values to satisfy all edit rules. 

The first two steps have already been discussed. Imputation is a necessary step after error localization under the 
Fellegi-Holt paradigm, because this method only identifies certain variables as erroneous but it does not provide 
new values for these variables. In addition, some values in the data may have been missing from the start and 
also have to be imputed in step 3. As most common imputation methods do not take all edit rules into account 
(De Waal et al., 2011), some edit rules may still be failed by the data after step 3. In step 4, the imputed values 
are minimally adjusted according to some criterion (e.g., a weighted Euclidean distance) so that all edit rules 
become satisfied. Only values that have been imputed may be adjusted during this step; the error localization 
method from step 2 guarantees that it is possible to satisfy all edit rules in this way. 
 
13. There exist various software packages that implement (part of) the above methodology for automatic 
editing. We will use a suite of R packages, developed at Statistics Netherlands, that provide an open source 
implementation of methods for all of the above process steps: validate for managing and evaluating edit rules 
throughout the process, dcmodify for deductive correction, errorlocate for error localization, deductive 
and simputation for imputation of missing values, and rspa for minimal adjustment according to a weighted 
Euclidean distance. We refer to Van der Loo and De Jonge (2018) for more information about these R packages. 
 

III. Automatic editing of multiple data sources 
 
A. Notation and problem statement 
 
14. Suppose that there are 𝑃 data sources that we want to edit in a consistent manner. We denote the vector 

of observed variables of unit 𝑖 in source 𝑝 as 𝐱
( )

= 𝑥
( ) , where 𝑗 ∈ 1, … , 𝐽( )  indicates the variables in 

source 𝑝 ∈ {1, … , 𝑃}. For each data source, some internal edit rules may have been formulated. For notational 
simplicity, we assume that all edit rules are linear restrictions of the form 

∑ 𝑎
( )

𝑥
( )( )

⊙ 𝑏
( )

, (1) 

where 𝑘 is an index of edit rules, 𝑎( ) and 𝑏( ) are given constants and the operator ⊙ denotes either an equality 
(=) or an inequality sign (≤ or ≥). More generally, conditional edit rules that consist of linear components (e.g., 
“IF (𝑥 > 0) THEN (𝑥 > 0)”) can also be handled during automatic error localization, by rewriting them in the 
form (1) using auxiliary binary variables; cf. Van der Loo and De Jonge (2018, Chapter 7). 
 

15. Next, let 𝐲( )
= 𝑦

( )  denote the common variables (as defined in Section I.C) that are observed for 

unit 𝑖 in source 𝑝. In the simplest case, it holds that 𝑦( )
= 𝑥

( ) for some 𝑗 = 𝑗(𝑙). More generally, we assume 
that each common variable can be derived as a linear combination of observed variables in each source: 

𝑦
( )

= ∑ 𝑐
( )

𝑥
( )( )

, (2) 



 
                                                                                               
 

for some known constants 𝑐( ). Let 𝐿 denote the total number of common variables between the available data 
sources. We denote the subset of all data sources in which common variable 𝑙 is available for unit 𝑖 as 𝐵 ⊆
{1, … , 𝑃}. Note that 𝐵  is unit-specific, since not every unit is necessarily observed in each data source, e.g., due 
to sampling and non-response. In practice, 𝐿 ≪ ∑ 𝐽( ). 
 
16. Given the assumption that the definitions of common variables are aligned between sources, the values 

𝑦
( )

 and 𝑦
( )

 should be close together for each pair of sources (𝑝 , 𝑝 ) with 𝑝 ∈ 𝐵  and 𝑝 ∈ 𝐵 . This 
motivates the formulation of additional edit rules across data sources of the form: 

𝑦
( )

− 𝑦
( )

≤ 𝜖 𝑦
( )

,     for all 𝑝 ≠ 𝑝  with 𝑝 ∈ 𝐵  and 𝑝 ∈ 𝐵 . (3) 

Here, 0 ≤ 𝜖 < 1 is a constant that defines the maximal allowed relative deviation between two values for 
common variable 𝑙. Below, we will use 𝜖 = 10% for all common variables. Restrictions of the form (3) can be 
rewritten as conditional linear edit rules and therefore can be handled during automatic error localization. 
 
17. In principle, the problem of making the available data of unit 𝑖 consistent both within and across all data 

sources could now be solved as one large automatic editing problem: edit the data 𝐱
( )

, … , 𝐱
( )

, 𝐲
( )

, … , 𝐲
( )  

so that all restrictions (1), (2) and (3) are satisfied. In practice, this problem rapidly becomes too complicated and 
time-consuming as the number of data sources 𝑃 and/or common variables 𝐿 increases. We propose an alternative 
stepwise approach to solve this data editing problem, which should lead to a more manageable workload. 
 
18. In order to set up this stepwise approach, it is useful to introduce a vector 𝐳 = (𝑧 ) of ‘true’ values of 
the common variables for unit 𝑖. Given that the definitions of the common variables are aligned between sources, 
a unique ‘true’ value 𝑧  conceptually exists for each unit, although it is not observed directly. (Of course, it may 

hold that 𝑧 = 𝑦
( ) for some 𝑝, but we do not know this a priori.) Instead of defining restrictions of the form (3), 

we can also restrict the relative deviations between observed values 𝑦( ) and their underlying ‘true’ value 𝑧 : 

𝑦
( )

− 𝑧 ≤ 𝜖∗|𝑧 |,     for all 𝑝 with 𝑝 ∈ 𝐵 , (4) 

for some 0 ≤ 𝜖∗ < 1. Suppose that we choose 𝜖∗ = 𝜖 /(2 + 𝜖 ). Then it can be shown, using the triangle 
inequality, that any unit that satisfies all restrictions (4) also satisfies all restrictions (3): 

𝑦
( )

− 𝑦
( )

≤ 𝑦
( )

− 𝑧 + 𝑦
( )

− 𝑧 ≤ 2𝜖∗|𝑧 | ≤
∗

∗ 𝑦
( )

= 𝜖 𝑦
( )

. 

For the third inequality, it was used that (4) implies that |𝑧 | ≤ 𝑦
( )

+ 𝑧 − 𝑦
( )

≤ 𝑦
( )

+ 𝜖∗|𝑧 |. In 

practice, when 𝜖 ≪ 1 the simple choice 𝜖∗ = 𝜖 /2 works well as an approximation of 𝜖∗ = 𝜖 /(2 + 𝜖 ). 
 
19. A further advantage of introducing the ‘true’ values 𝑧  is that this makes it easy to define additional edit 
rules of the form (1) that describe relations between common variables: 

∑ 𝑎 𝑧 ⊙ 𝑏 . (5) 

A simple, but useful example is a non-negativity restriction: 𝑧 ≥ 0. Note that for any common variable to which 

a non-negativity restriction applies, edit rule (4) simplifies to (1 − 𝜖∗)𝑧 ≤ 𝑦
( )

≤ (1 + 𝜖∗)𝑧 . 
 
B. Summary of proposed approach 
 
20. The goal of consistent automatic editing within and across data sources can now be stated succinctly as: 

adjust the data 𝐱
( )

, … , 𝐱
( )

, 𝐲
( )

, … , 𝐲
( )

, 𝐳  as necessary so that all restrictions (1), (2), (4) and (5) are satisfied. 

We propose to solve this automatic editing problem in three steps: 



 
                                                                                               
 

(1) Automatic editing of common variables across data sources 

Errors are identified in 𝐲
( )

, … , 𝐲
( )

, 𝐳  in such a way that all restrictions (4) and (5) can be satisfied. 

 
(2) Deriving additional edit rules on common variables 

First the ‘true’ values in 𝐳  are imputed, taking into account all restrictions (4) and (5). Next, given these 

imputed ‘true’ values, additional edit rules are derived for the common variables 𝐲
( )

, … , 𝐲
( )  in the 

form of lower and upper bounds that follow from (4). 
 

(3) Automatic editing within each individual data source 
The final step is carried out for each data source separately. For each 𝑝 ∈ {1, … , 𝑃}, errors are identified 

and new values are imputed in the data 𝐱
( )

, 𝐲
( )  in such a way that all restrictions (1) and (2) are 

satisfied as well as all additional edit rules that were derived for 𝐲( ) in step 2. 
 
In the following subsections, each of these steps will be discussed in more detail. 
 
C. Step 1: Automatic editing of common variables across data sources 
 

21. The goal of this step is to identify errors in the common variables 𝐲
( )

, … , 𝐲
( )

, 𝐳  using all restrictions 

of the form (4) and (5). As part of this step we can apply both deductive correction and automatic error localization 
(see Section II). If it is reasonable to assume that the observed data in different sources were created by 

independent processes, then it follows that measurement errors in observed common values 𝑦( ) with the same 
underlying ‘true’ value 𝑧  occur independently of each other. As this corresponds to one of the assumptions of 
the original Fellegi-Holt paradigm, error localization under this paradigm may then be an effective approach here. 
In addition, deductive correction and/or generalized edit operations could be useful to handle systematic errors 
that affect multiple common variables within the same data source, such as thousand errors. 
 
22. To apply error localization in this step, reliability weights should be assigned to all common variables in 

𝐲
( )

, … , 𝐲
( ). (Note: It is not necessary to assign weights to the ‘true’ values in 𝐳  in this step, as these values are 

always missing.) These weights could be based on subject-matter knowledge, by comparing the reliability of 
each common variable across the data sources in which it occurs. If sufficient information is available, these 
weights could be differentiated by making them dependent on known characteristics of a unit such as its type of 
economic activity, size class and legal structure. A further refinement could be to derive reliability weights 
automatically for each unit using local scores (cf. Vaasen-Otten et al., 2022) as input. 
 
23. The output of this step is a dataset for unit 𝑖 in which it is possible to impute the missing values in 

𝐲
( )

, … , 𝐲
( )

, 𝐳  in such a way that all restrictions (4) and (5) are satisfied. To achieve this, if necessary, some 

originally observed values in 𝐲( )
, … , 𝐲

( ) may have been changed or set to missing. In particular, it is guaranteed 

that, after appropriate imputation of missing values, no deviations larger than 𝜖 |𝑦
( )

| will occur between any 

pair of common variables 𝑦
( )

, 𝑦
( )

 with 𝑝 ∈ 𝐵  and 𝑝 ∈ 𝐵 . The complexity of the error localization 

problem that has to be solved in this step remains limited as the number of sources 𝑃 increases, because from 

each data source only the common variables 𝐲( ) are taken into account, rather than all observed variables 𝐱( ). 
 
24.  A small example is shown in Table 1. This example involves 𝑃 = 5 data sources and 𝐿 = 5 common 
variables for an enterprise in the manufacturing sector. This is only a subset of all data sources and common 
variables that were investigated during our Proof of Concept (see Section V below), to keep the example concise. 
The enterprise has been observed in: (1) a survey on Structural Business Statistics (SBS); (2) a survey on 
industrial production (ProdCom); (3) an administrative dataset on finances of small enterprise groups (Dutch 
abbreviation: SFKO); (4) an administrative dataset on Short-Term Statistics (STS-admin); (5) a survey on Short-
Term Statistics (STS-survey). All data in Table 1 have been aligned to refer to annual values at the enterprise 
level. 
 
 



 
                                                                                               
 
 
Table 1: Example of automatic editing across data sources (steps 1 and 2). A dot (.) denotes a missing value. 

variable description weight original value after step 1 after step 2 

𝑦
( )

  Total turnover, definition 1 (SBS) 5 16 091 16 091 16 091 

𝑦
( )

  Total turnover, definition 1 (ProdCom) 3 2 504 . . 

𝑧   Total turnover, definition 1 (‘true’ value) - . . 16 091 

𝑦
( )

  Total turnover, definition 2 (SBS) 5 16 091 . . 

𝑦
( )

  Total turnover, definition 2 (SFKO) 3 18 496 18 496 18 496 

𝑦
( )  Total turnover, definition 2 (STS-admin) 7 19 386 19 386 19 386 

𝑦
( )  Total turnover, definition 2 (STS-survey) 3 16 610 . . 

𝑧   Total turnover, definition 2 (‘true’ value) - . . 19 386 

𝑦
( )  Total industrial production (SBS) 4 16 091 16 091 16 091 

𝑦
( )  Total industrial production (ProdCom) 6 15 582 15 582 15 582 

𝑦
( )

  Total industrial production (STS-survey) 3 16 610 16 610 16 610 

𝑧   Total industrial production (‘true’ value) - . . 16 091 

𝑦
( )  Domestic industrial production (SBS) 4 16 091 16 091 16 091 

𝑦
( )

  Domestic industrial production (ProdCom) 8 15 582 15 582 15 582 

𝑧   Domestic industrial production (‘true’ value) - . . 15 582 

𝑦
( )  Domestic industrial production of goods (SBS) 4 16 091 . . 

𝑦
( )

  Domestic industrial production of goods (ProdCom) 8 2 504 2 504 2 504 

𝑧   Domestic industrial production of goods (‘true’ value) - . . 2 504 

 
25. The five common variables in this example are related to industrial production and total turnover 
(according to two different definitions). The following restrictions of the form (5) have been defined: 

 𝑧 ≤ 𝑧  (turnover according to second definition is never smaller than according to first definition); 
 𝑧 ≤ 𝑧  (turnover is never smaller than total industrial production); 
 𝑧 ≤ 𝑧  (total industrial production is never smaller than domestic industrial production); 
 𝑧 ≤ 𝑧  (domestic industrial production is never smaller than domestic industrial production of goods); 
 𝑧 ≥ 0 (domestic industrial production of goods is non-negative). 

Restrictions of the form (4) have been defined with 𝜖∗ = 5%, corresponding to 𝜖 ≈ 10% in (3). 
 
26. The originally observed values of all common variables are shown in the fourth column of Table 1. It is 
seen that some inconsistencies with respect to (3) occur for this unit; for instance, the total turnover according to 
ProdCom is much smaller than according to the other sources. We have applied error localization based on the 
Fellegi-Holt paradigm to address these inconsistencies. The reliability weights are shown in the third column of 
Table 1. For SBS these weights were readily available from the automatic editing process that is currently used 
in production at Statistics Netherlands. For the other sources, reliability weights were set by subject-matter 
experts by comparing the expected quality of each common variable to the corresponding SBS variable. The 
output of error localization in this step is shown in the fifth column of Table 1. 
 
D. Step 2: Deriving additional edit rules on common variables 
 
27. In this step, we first impute possible values for the ‘true’ values 𝑧  of the common variables. To do this, 
we begin by deriving lower and upper bounds on each 𝑧 , given that (4) and (5) have to be satisfied by these 

values along with all observed values 𝑦( ) that were not identified as erroneous in step 1. Appropriate bounds 
can be derived by solving two linear optimization problems for each 𝑧 , in which the value of 𝑧  is minimized 
(maximized) given the restrictions (4) and (5). In R, this can be done automatically using the function 
detect_boundary_num from the validatetools package. 
 
Table 2: Example of automatic editing across data sources (continued): feasible intervals for 𝑧 . 

variable description lower bound upper bound 
𝑧   Total turnover, definition 1 (‘true’ value) 15 819.05 16 937.89 
𝑧   Total turnover, definition 2 (‘true’ value) 18 462.86 19 469.47 
𝑧   Total industrial production (‘true’ value) 15 819.05 16 402.11 
𝑧   Domestic industrial production (‘true’ value) 15 324.76 16 402.11 
𝑧   Domestic industrial production of goods (‘true’ value) 2 384.76 2 635.79 

 



 
                                                                                               
 
28. For the example from Table 1, Table 2 shows the resulting lower and upper bounds on 𝑧 , … , 𝑧 . As 

long as the imputed value for 𝑧  conforms to these bounds, none of the non-missing values 𝑦
( ) in the fifth 

column of Table 1 deviates by more than 𝜖∗ = 5% from it. The restrictions (5) have also been taken into account. 
 
29. Next, imputed values for 𝑧  are derived that conform to the specified lower and upper bounds. The last 
column of Table 1 shows possible imputed values for the above example. In this small example, these imputations 

were derived by a simple ad hoc procedure: for each 𝑙 we imputed 𝑧  by the observed value 𝑦( ) of the variable 
with the largest reliability weight that remains non-missing after step 1 and does not violate the bounds. In 
general, this ad hoc procedure does not always yield appropriate imputations and a more advanced method is 
needed. In general, imputations could be derived from a statistical model and adjusted to satisfy the bounds. 
 

30. Given the imputed values for 𝑧 , we then derive lower and upper bounds on the common variables 𝑦( ) 
from the restrictions (4). These bounds are used to define additional edit rules for these variables of the form 

𝐿(𝑧 ) ≤ 𝑦
( )

≤ 𝑈(𝑧 ),     for all 𝑝 with 𝑝 ∈ 𝐵  and |𝐵 | ≥ 2. (6) 

In the next step, these additional edit rules are used as restrictions to ensure that no new inconsistencies can be 
introduced between data sources when editing the individual sources. In the special case that 𝑧 ≥ 0, edit rule 
(6) has a simple form with 𝐿(𝑧 ) = (1 − 𝜖∗)𝑧  and 𝑈(𝑧 ) = (1 + 𝜖∗)𝑧 . More generally, 𝐿(𝑧 ) and 𝑈(𝑧 ) can 
be derived as before, using the function detect_boundary_num from validatetools. The condition that 
|𝐵 | ≥ 2 is added in (6) because restrictions of this form are considered informative only for those units that 
have observations on a common variable in at least two sources. Otherwise, no confrontation between observed 
values from different sources has actually taken place for variable 𝑙 during step 1, and by using (6) we would 

simply restrict the value of 𝑦( ) to remain close to its original value in the only available data source. 
 
31. For the above example, since all common variables are restricted to be non-negative and 𝜖∗ = 5%, all 

restrictions (6) take the simple form 0.95𝑧 ≤ 𝑦
( )

≤ 1.05𝑧 . For instance, for 𝑦( ), turnover according to the 

second definition as observed in the SBS survey, we have the additional edit rule: 18 416.7 ≤ 𝑦
( )

≤ 20 355.3. 
 
E. Step 3: Automatic editing within each individual data source 
 
32. In the final step, automatic editing is applied to each data source separately. For each 𝑝, the data 

𝐱
( )

, 𝐲
( )  are made consistent with the edit rules (1), (2) and (6). It is possible that new errors are found in 𝐲( ) 

during this step, in addition to the errors that were previously found during step 1. The restrictions (6) are included 
to ensure that such errors are corrected without introducing inconsistencies with respect to the other data sources. 
 
33. During this step, both deductive correction and error localization can be used as discussed in Section II. 

For error localization, the reliability weights of the variables in 𝐱
( ) can be chosen just as they would be for 

automatic editing within source 𝑝. For the common variables in 𝐲( ), we propose to set the reliability weight to 
a very small value (e.g., 0.01), so that these variables may always be adjusted if this is necessary to satisfy the 
internal edit rules (1) and (2). The computational complexity of error localization in this step should be similar 
to that of error localization for one data source on its own. 
 
34. Continuing the example from Tables 1 and 2, Table 3 contains part of the results of step 3 for the first 
data source, the SBS survey. It should be noted that in reality the SBS survey contains over 100 variables. In 

Table 3, we only show seven SBS variables 𝑥( ) that are directly related to the five common variables 𝑦( ) used 
in the example so far. The relations (2) between these SBS variables and the common variables are as follows: 

 𝑦
( )

= 𝑥
( )

− 𝑥
( )

− 𝑥
( ); 

 𝑦
( )

= 𝑥
( ); 

 𝑦
( )

= 𝑥
( )

+ 𝑥
( )

− 𝑥
( )

− 𝑥
( ); 

 𝑦
( )

= 𝑥
( )

+ 𝑥
( )

− 𝑥
( )

− 𝑥
( ); 

 𝑦
( )

= 𝑥
( )

− 𝑥
( )

− 𝑥
( ). 

 



 
                                                                                               
 
Table 3: Example of automatic editing across data sources (continued; step 3 for SBS). 

variable description weight original value after step 2 after step 3 

𝑦
( )  Total turnover, definition 1 0.01 16 091 16 091 16 091 

𝑦
( )  Total turnover, definition 2 0.01 16 091 . 18 417 

𝑦
( )

  Total industrial production 0.01 16 091 16 091 16 091 

𝑦
( )

  Domestic industrial production 0.01 16 091 16 091 16 091 

𝑦
( )  Domestic industrial production of goods 0.01 16 091 . 2 629 

𝑥
( )

  Total turnover, SBS definition 5 16 091 16 091 18 417 

𝑥
( )  Excises paid 3 0 0 2 326 

𝑥
( )

  On-charged freight costs 4 0 0 0 

𝑥
( )

  Total industrial production of goods, SBS definition 1 16 091 16 091 4 955 

𝑥
( )

  Domestic industrial production of goods, SBS definition 1 16 091 16 091 4 955 

𝑥
( )  Total industrial production of services, SBS definition 1 0 0 13 462 

𝑥
( )  Domestic industrial production of services, SBS definition 2 0 0 13 462 

 
35. It is seen that one of the corrections made during automatic editing in this example is that part of industrial 
production of goods as reported in the SBS survey is moved to industrial production of services. Looking back 
at Table 1, it is seen that this correction removes an inconsistency between SBS and ProdCom. It should be noted 
that a special edit operation (cf. Section II) was included here during error localization of SBS data that moves 
an arbitrary amount from industrial production of goods to services or vice versa. The other data sources in this 
example could be edited during step 3 in a similar way. Depending on the source, automatic editing could rely 
more on deductive correction or more on error localization. In general, there may be units for which edit rules 

(1), (2) and (6) cannot be satisfied simultaneously, e.g., due to errors in 𝐱( ) that cannot be solved consistently 

with the bounds on 𝐲( ) derived in step 2. If such a unit is influential, it should be investigated manually instead. 
 

IV. A score to evaluate the suitability of automatic editing across data sources 
 
36. In practice, each data source 𝑝 may contain some units that exhibit very large inconsistencies between 

𝐲
( ) on one hand and 𝐲

( )
, … , 𝐲

( )
, 𝐲

( )
, … , 𝐲

( )  on the other hand. During step 3 of the above procedure 

for automatic editing, these units are likely to require many and/or large adjustments to make the values in 

𝐱
( )

, 𝐲
( )  simultaneously consistent with all internal edit rules (1) and (2) and the additional edit rules (6) that 

are derived in step 2. If it is not possible to explain these large inconsistencies by systematic errors that can be 
resolved confidently using deductive correction rules, they have to be resolved using error localization and the 
quality of the adjusted data may be low, with many (large) adjustments on the wrong variables. 
 
37. It may therefore be desirable to exclude such units during step 3 of automatic editing across data sources. 
If the inconsistencies are large enough, they may be edited interactively instead. A local score function that 
identifies units with large inconsistencies on common variable 𝑙 may be computed after step 2 as follows: 

𝑆
( )

=
( )

| |
,     𝑙 = 1, … , 𝐿. (7) 

Here, 𝑦( ) denotes an original value (prior to step 1) and 𝑧  denotes an imputed ‘true’ value from step 2. These 
local scores may be combined into a global score for unit 𝑖 in source 𝑝: 

𝑆
( )

(𝛼) =
∑

( )

∑

/

, (8) 

where 𝑤 , … , 𝑤  are weights that reflect the relative importance of the common variables and 𝛼 ≥ 1 is a 
parameter that determines the shape of the global score function; see Vaasen-Otten et al. (2022) for more details. 

Units with 𝑆( )
(𝛼) above some threshold may be excluded from automatic editing of source 𝑝 in step 3. 

 
 
 



 
                                                                                               
 

V. Conclusions 
 
38. At Statistics Netherlands, we have conducted an extensive Proof of Concept (PoC) with automatic editing 
across data sources, using the method that was outlined in Section III. Different settings were tried and the results 
were discussed with subject-matter experts associated to the different data sources. A detailed discussion of this 
PoC is not possible within the limited space of this paper. However, the main conclusions were as follows: 

 The proposed stepwise approach to automatic editing is technically feasible within the current IT 
environment at Statistics Netherlands. It requires much less computational work than an approach that 
attempts to solve the data editing problem across data sources in one step. 

 The use of special edit operations within an extension of the Fellegi-Holt paradigm leads to greater 
flexibility during error localization. We were able to mimic several commonly-used data editing 
strategies of subject-matter experts during automatic editing by defining appropriate edit operations. 

 To use automatic editing across data sources during regular production, more work is needed to increase 
the quality of the edited data. This also requires more experience with interactive editing across data 
sources, to identify and explain possible systematic differences between data sources and to reach 
consensus among experts about the ‘ideal’ way to resolve certain types of inconsistencies between data 
sources. An ongoing process will be needed to learn from experiences during interactive editing within 
and across data sources and to translate this knowledge into rules, edit operations and other parameter 
settings for automatic editing. 

We are planning to further examine the possibilities for automatic editing across data sources in a pilot for a 
cluster of statistics, including the annual business statistics. 
 
39. As noted at the beginning of this paper, this research into automatic editing across data sources is part of 
a larger program at Statistics Netherlands to develop a new integrated uniform production system for business 
statistics. The main goals of this renewal program are more flexible output, a more agile and efficient production 
process, and facilitating more possibilities for innovations and further developments. 
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