

Towards a new integrated uniform production system for business statistics at Statistics Netherlands

Quality indicators to guide top-down analysis

Anita Vaasen-Otten, Frank Aelen, Sander Scholtus and Wilco de Jong 3-10-2022

EBN 2.x: Renewal program for business statistics at SN

Main goals: towards more efficient, more flexible and future proof business statistics

Efficient, goal-oriented co-creation

Balance on innovation, re-use and implementation

New process, way of working and matching tooling

2.x: considered small steps

Innovation, co-creation and implementations

Innovation

- 8 principles
- Applied methodology
- The proof of the pudding... is in a Proof of Concept!

Co-creation with Business and with Agile teams

- Re-use of best practices
- As much standardized coherent models & common tools as possible!

Implementations

- Small steps instead of a big bang
- Visible results
- Immediate feedback contributes to continuous improvements

Principles of the new production system*

*: Implementation ongoing

Towards real-time processing

- 1. We process our input automatically and immediately up to provisional output;
- 2. We measure quality automatically and thus direct the manual work;

Towards more coherence

- 3. We make our data consistent as early as possible;
- 4. We share all our data, right from the start;

Towards more standardization and re-use of best practices

- 5. We centrally manage all our (population) frames, which are the basis of our statistics;
- 6. We have fully standardized our processes, methods, data and IT;
- 7. Our processes, methods, data and IT are modular;

Continuous improvement

8. We resolve manual corrections the following iteration in the standard process.

Quality indicators to guide top-down analysis*

- Focus on score functions that identify potential influential errors in the data;
- Used to prioritize records for manual editing and to quickly zoom in on the part of the record where there may be a problem;
- Can also be used to indicate the expected quality of an aggregate.

^{*}Automatic data editing is described in a companion paper

Local score for level variable

$$s_{i,j} = \frac{v_{i} * |y_{i,j} - \tilde{y}_{i,j}|}{|Y_{j}|}, \quad (j = 1, ..., J)$$
 (1)

with v_i the sample weight of unit i, $y_{i,j}$ the observed value of variable j, $\tilde{y}_{i,j}$ a reference value for variable j and Y_j an estimate for the aggregate total for variable j

- Relative influence of possible error on the output
- Reference value e.g. t-1, other source, related variable, ...

Additional local scores

- Structure variables;
- Consistency across statistics;
- Non-linear indicators with two or more target variables simultaneously (e.g. production-use ratios for national accounts).

More details available in paper

Global scores

Global score s_i per unit that is compiled from the underlying local scores:

$$s_i(\alpha) = \left\{ \frac{\sum_{j=1}^J \left(w_j * \frac{s_{i,j}}{M_j} \right)^{\alpha}}{\sum_{j=1}^J w_j^{\alpha}} \right\}^{1/\alpha}$$
 (2)

Adjustable weights w_j can be used to indicate that certain target variables, such as totals of revenue or costs, are more important than others (such as their details).

 M_j is a measure for the 'maximum acceptable' relative influence per unit of a possible error in the target variable(s) of local scores $s_{i,j}$ on the aggregate in the denominator.

Aggregate scores

Summary measure based on the scores for all units that contribute to a particular output aggregate A. Only scores are counted above a certain threshold τ_A .

This can be done for local scores:

$$S_{j,A} = \sum_{i \in A} \frac{S_{i,j}}{M_j} * I\left\{\frac{S_{i,j}}{M_j} \ge \tau_A\right\}, \quad (j = 1, ..., J),$$
 (3)

and for global (or other composite) scores:

$$S_A(\alpha) = \sum_{i \in A} s_i(\alpha) * I\{s_i(\alpha) \ge \tau_A\},\tag{4}$$

where $I\{.\} = 1$ if the argument is true and else $I\{.\} = 0$.

Example: single statistic – publication aggregates

Prioritize aggregates – based on aggregate score

Example: single statistic – overview of units

Example: single statistic – individual unit

Prioritize variables within unit – based on local scores

Example: across statistics – publication aggregates

Regkol confrontatie cluster

Prioritize statistics with large inconsistencies between them, for a certain aggregate and mutual variable

Example: across statistics – overview of units

Prioritize units within aggregate

Implementations

- Past two years we tested and refined ideas in POCs;
- Implemented in generalized R-modules web service;
- Scores can be tailored to various statistics by means of rules;
- For a limited number of individual statistics, the scores have been implemented and are already being applied in practice;
- Later this year: pilot regarding the top-down analysis of inconsistencies between statistics → gain experience with new roles that are necessary for this new way of working.

Concluding remarks

- Experiences to date show that the new scores allow analysts to work in a more targeted way than before;
- In the near future we will continue the stepwise developments and implementations and working in an agile manner, we will keep learning from each further step.