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Influential units

• In practice, we often face the problem of influential values in the
selected sample

• An influential unit is a legitimate unit of the finite population. It is
not a measurement error:

I Gross error;

I Measurement errors are detected at the editing stage and are treated
either manually or by some form of imputation.

• Assumption: Influential units are legitimate observations (not errors)

• Survey statistics are typically sensitive to the presence of influential
units
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Influential units

• Including or excluding an influential unit in the calculation of survey
statistics can have a dramatic impact on their magnitude

−→ Their presence in the sample tends to make classical estimators
very unstable

−→ large variance

• Common issue in business surveys that collect economic variables
whose distributions are highly skewed

I Influential units are often associated with very large values or very large
errors

I Stratum jumpers: may combine a very large value and a large sampling
weight
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Influential units

• In the presence of influential units, an imputed estimator of a
population total:

I is (approximately) unbiased provided that the imputation model is
correctly specified

I may have a very large variance

• Treatment of influential values: produces stable but biased estimators
−→ trade-off between bias and variance

• Objective: reduce the influence of units that have a large influence

• Our hope: the mean square error of the robust version is smaller than
that of the corresponding classical estimator

• How to impute/estimate in the presence of influential units?
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The setup

• U: finite population of size N;

• Goal: estimate a population total of a survey variable y :

ty =
∑
i∈U

yi

• S : sample of size n selected according to a given sampling design
p(S);

• Ii : sample selection indicator such that Ii = 1 if i ∈ S , and Ii = 0,
otherwise;

• Design-unbiased (or p-unbiased) estimator of ty :

t̂HT =
∑
i∈S

diyi

I di = 1/πi : design weight attached to unit i ;

I πi : first-order inclusion probability attached to unit i
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The setup

• The survey variable Y is prone to missing values.

• Let ri be the response indicator such that

ri =

{
1, if yi is observed,

0, if yi is missing.

• Set of respondents: Sr = {i ∈ S ; ri = 1}.

• Set of nonrespondents: Sm = {i ∈ S ; ri = 0}.

• Imputed estimator of ty :

t̂I =
∑
i∈Sr

diyi +
∑
i∈Sm

diy
∗
i ,

where y∗i is the imputed value for the missing yi .
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Deterministic linear regression imputation

• x: vector of fully observed variables

• Imputation model
yi = x>i β + εi ,

such that

E(εi | xi ) = 0,E(εiεj | xi , xj) = 0, i 6= j and V(εi | xi ) = σ2φi

with φi > 0 (known)

• Estimator of β based on the responding units:

B̂WLS =

∑
i∈Sr

dixiφ
−1
i x>i

−1∑
i∈Sr

dixiφ
−1
i yi

• Imputed value: y∗i = x>i B̂WLS
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Imputed estimator

• Estimator of ty after deterministic linear regression imputation:

t̂I ,WLS =
∑
i∈Sr

diyi +
∑
i∈Sm

dix
>
i B̂WLS

• If the first moment of the imputation model is correctly specified, we
have

EmEpEq(t̂I ,WLS − ty ) = 0.

• That is, the estimator t̂I ,WLS is mpq-unbiased for ty .

• However, t̂I ,WLS may be inefficient in the presence of influential units.

David Haziza (University of Ottawa) Triply robust inference in surveys October 3, 2022 8 / 36



Two methods commonly used in practice

• Robust regression: Replace the estimator B̂WLS by a robust version
B̂R(c); for instance an M-estimator based on the Huber function;

−→ B̂R(c) is solution of∑
i∈Sr

ψc

(
yi − x>i β√

φi σ̂

)
xi√
φi

= 0,

where ψc(·) is the so-called Huber function and c is a tuning
constant.

• Typically, the value is set to 1.345 (as in classical statistics)

• Imputed value: y∗i = x>i B̂R(1.345)

• Other ψ-functions: Biweight, Andrew, etc.

• Other estimators: GM, MM, LTS estimators, etc.

• Objective of robust regression : describe the behavior of the inliers
(the non-outliers)
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Huber function
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Figure 1: Huber function with c = 3
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Two methods commonly used in practice

• Excluding outliers: Identify the influential units (usually by an outlier
detection method), remove these units and obtain a predicted value
obtained by fitting the customary linear regression model

• Imputed value: y∗i = x>i B̂∗WLS, where

B̂∗WLS =

∑
i∈Sr

ωixiφ
−1
i x>i

−1∑
i∈Sr

ωixiφ
−1
i yi ,

where ωi = di if i is not discarded and ωi = 0 if i is discarded.

• Underlying assumption: the discarded respondent y -values are unique;
i.e., they do not represent similar non-respondents −→
nonrepresentative respondents
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A simulation study

Are these methods satisfactory?

• We repeated 10, 000 iterations of the following process:

(1) A population U of size N = 10, 000 was generated, with one survey
variable Y and one covariate X using a mixture of normal distribution
with a proportion of outliers equal to 5%;

(2) A sample S of size n = 100; 200; 500 was selected from U according to
simple random sampling without replacement;

(3) Nonresponse to Y was generated according to a uniform nonresponse
mechanism with pi = 50% for all i ;

(4) Missing values were imputed using 3 imputation procedures.
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A simulation study: Point estimators

We computed three types of imputed estimators:
• Non-robust estimator:

t̂I ,WLS =
∑
i∈Sr

diyi +
∑
i∈Sm

dix
>
i B̂WLS

• Based on robust regression:

t̂I (c) =
∑
i∈Sr

diyi +
∑
i∈Sm

dix
>
i B̂R(c)

We used the Huber function with c = 0.1; 1.345; 2.5.

• Excluding the outliers:

t̂∗I ,WLS =
∑
i∈Sr

diyi +
∑
i∈Sm

dix
>
i B̂∗WLS

We used the Cook distance with threshold c = 4/(n − 3) and
studentized residuals with c = 2; 2.5; 3.
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A simulation study: Asymmetric outliers

 

n =100 

• Respondent                  ------- Least squares regression                          

• Nonrespondent            ------- Robust regression                                       

• Nonsampled unit                                   

 

Figure 2: Data generated from a mixture distribution with 5% outliers
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A simulation study: Results

• Monte carlo percent relative bias :

RB(t̂I ) =
EMC

(
t̂I − ty

)
ty

× 100

• Relative efficiency:

RE = 100 × MSEMC (t̂I )

MSEMC (t̂I ,WLS)

WLS Robust regression
WLS

(Exclude outliers)

n c = 0.1 c = 1.345 c = 2.5
Studentized

c = 2
Studentized
c = 2.5

Studentized
c = 3

Cook distance

100
-0.0
(100)

-11.5
(78)

-10.7
(73)

-9.7
(70)

-9.3
(82)

-8.3
(84)

-7.5
(86)

-7.5
(87)

200
-0.2
(100)

-11.6
(128)

-10.8
(116)

-9.5
(102)

-9.1
(113)

-7.9
(111)

-6.9
(109)

-7.1
(110)

500
-0.2
(100)

-11.6
(260)

-10.8
(230)

-9.4
(190)

-8.5
(189)

-7.1
(166)

-6.0
(149)

-6.2
(156)

Table 1: Monte Carlo percent relative bias and Monte Carlo relative efficiency of
several estimators

David Haziza (University of Ottawa) Triply robust inference in surveys October 3, 2022 15 / 36



A simulation study: Symmetric outliers

 

n =100 

• Respondent                  ------- Least squares regression                          

• Nonrespondent            ------- Robust regression                                       

• Nonsampled unit                                   

 
Figure 3: Data generated from a mixture distribution with 5% outliers
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A simulation study

• Monte carlo percent relative bias :

RB(t̂I ) =
EMC

(
t̂I − ty

)
ty

× 100

• Relative efficiency:

RE = 100 × MSEMC (t̂I )

MSEMC (t̂I ,WLS)

WLS Robust regression
WLS

(Exclude outliers)

n c = 0.1 c = 1.345 c = 2.5
Studentized

c = 2
Studentized
c = 2.5

Studentized
c = 3

Cook distance

100
-0.1
(100)

-0.1
(57)

-0.1
(57)

-0.1
(58)

-0.1
(57)

-0.1
(58)

-0.1
(60)

-0.1
(59)

200
-0.1
(100)

-0.0
(57)

-0.0
(57)

-0.0
(58)

-0.0
(57)

-0.0
(58)

-0.0
(59)

-0.0
(58)

500
-0.0
(100)

-0.0
(57)

-0.0
(57)

-0.0
(58)

-0.0
(57)

-0.0
(58)

-0.0
(59)

-0.0
(58)

Table 2: Monte Carlo percent relative bias and Monte Carlo relative efficiency of
several estimators
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Are these methods satisfactory?

• In the case of symmetric outliers, robust regression and weighted least
squares regression after removing outliers, behave very well in terms
of bias and efficiency;

• In the case of asymmetric outliers:

I Robust regression and weighted least squares regression may work well
in some scenarios but they tend to breakdown as the sample size
increases

I Why? Because the tuning constant c (e.g., c = 1.345) was fixed −→
not adaptative

• c should be adaptative −→ c increases as n increases

• At least two criteria: Determine the value of c that minimizes

I the estimated mean square error of the robust estimator: complex
without simplifying assumptions

I the maximum estimated conditional bias of the robust estimator;
Beaumont et al. (2013); Chen et al. (2022)
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Influence of a unit

• How measure the influence (or impact) of a unit?

• We measure the influence of i ∈ Sr (respondent) using the concept of
conditional bias:

Bi = EmEpEq

(
t̂I ,WLS − ty | Yi = yi , Ii = 1, ri = 1

)
.

• After some algebra, we obtain

Bi ≈
∑
j∈U

(
πij − πiπj

πiπj

)
yj+di

(∑
`∈U

(1 − p`)x>`

)(∑
`∈U

p`x`φ
−1
` x>`

)−1

xiφ
−1
i (yi − x>i B)

• First term on the right hand-side: influence of unit i on the sampling
error

• Second term on the right hand-side: influence of unit i on the
nonresponse error

• Bi : unknown −→ It must be estimated
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Influence of a unit

• Special case: simple random sampling without replacement and
simple linear regression imputation (i.e., xi = (1, xi )

> and φi = 1):

B̂i ≈
(
N

n
− 1

)
(yi − y I ) +

1

p̂

{
(1− p̂) +

(xi − x)(x − x r )

s2xr

}(
yi − B̂0,WLS − B̂1,WLSxi

)
,

where

y I = t̂I/N, p̂ = nr/n, s2xr = (nr − 1)−1
∑
i∈Sr

(xi − x r )2

• Responding unit i has a large influence if

I The sampling fraction n/N is small;

I Its y -value is far from the overall estimated mean y I ;

I The response rate is low;

I Its x-value is far from the overall estimated mean x −→ high leverage
point;

I It has a large vertical residual, yi − B̂0,WLS − B̂1,WLSxi
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First proposal

• Following Beaumont et al. (2013), we consider a robust version of

t̂I ,WLS =
∑
i∈Sr

diyi +
∑
i∈Sm

dix
>
i B̂WLS

based on the concept of conditional bias:

t̂I ,CB(c) = t̂I ,WLS −
∑
i∈Sr

B̂i +
∑
i∈Sr

ψc

{
B̂i

}
≡ t̂I ,WLS + ∆(c),

where ψc(·) denotes the Huber function.

• Proposal: select the value of c that minimizes

max
i∈Sr

∣∣∣B̂R
i

∣∣∣ ,
where B̂R

i is the conditional bias (influence) of unit i on the robust
estimator t̂I ,CB(c).
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First proposal

• Resulting estimator:

t̂I ,CB(copt) = t̂I ,WLS −
1

2

[
min
i∈Sr

{
B̂i

}
+ max

i∈Sr

{
B̂i

}]
• The value copt is obtained by solving

∆(c) = −1

2

[
min
i∈Sr

{
B̂i

}
+ max

i∈Sr

{
B̂i

}]
• There always exists a solution to the previous equation but the

solution may not be unique; see Beaumont et al. (2013) and Favre
Martinoz et al. (2015).

• copt increases as n increases −→ t̂I ,CB(copt) is a consistent estimator
of ty ; see Chen et al. (2022).
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Second proposal

• Idea: Propose an adaptative tuning constant c , cnew, and use robust
regression (based on Huber function say) with this constant.

• Let B̂R(cnew) be the solution of

∑
i∈Sr

ψcnew

(
yi − x>i β

σ̂
√
φi

)
xi√
φi

= 0,

where ψ(·) is the Huber function.

• Should we use the following estimator?

t̂I ,R(cnew) =
∑
i∈Sr

diyi +
∑
i∈Sm

dix
>
i B̂R(cnew)

• May not be a good idea because we are only ”taking care” of the
missing values. However, some respondents may also be influential
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Second proposal

• If φi = λ>xi , then

t̂I ,WLS =
∑
i∈S

dix
>
i B̂WLS

−→ Projection form.

• Proposal:

t̂I ,R(cnew) =
∑
i∈S

dix
>
i B̂R(cnew),

where

cnew = 1.345

1 +

∣∣∣∣min
i∈Sr

{
B̂∗i

}
+ max

i∈Sr

{
B̂∗i

}∣∣∣∣
2

+
n

N

√
n,

where B̂∗i denotes the standardized version of B̂i .
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Second proposal

cnew = 1.345

1 +

∣∣∣∣min
i∈Sr

{
B̂∗i

}
+ max

i∈Sr

{
B̂∗i

}∣∣∣∣
2

+
n

N

√
n

• If n/N small, the second term on the right hand-side is small −→ we
can omit it:

I If the distribution has symmetric outliers, then cnew will be slightly
larger than 1.345.

I If the distribution has asymmetric outliers (say to the right), then cnew
will be larger than 1.345.

• If n gets larger, then the second term on the right hand-side gets
larger and B̂R(cnew) get closer and closer to B̂WLS
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Simulation study: Set-up

10,000 iterations of the following process:

(1) Generate a population of size N = 1, 000;

Models used to generate the populations:

yi | xi ∼ D(µi ;σ
2φi ),

I µi = β0 + β1xi and φi = xi ; xi ∼ Gamma(1, 10);

I D: Normal, Lognormal, Pareto, Frechet, Weibull, Student, mixture of
normals, mixture of lognormals.

(2) From the population, select a sample of size n = 50; 100; 200
according to simple random sampling without replacement.

(3) In each sample: generate nonresponse to the y -variable according to
an uniform nonresponse mechanism with probability 50%.
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Simulation study: Point estimators

• In each sample, we computed four estimators of ty :

I The non-robust estimator:

t̂I ,WLS =
∑
i∈Sr

diyi +
∑
i∈Sm

dix
>
i B̂WLS

I The naive estimator:

t̂I ,R(1.345) =
∑
i∈Sr

diyi +
∑
i∈Sm

dix
>
i B̂R(1.345)

I The robust estimator based on the conditional bias:

t̂I ,CB(copt) = t̂I ,WLS −
1

2

[
min
i∈Sr

{
B̂i

}
+ max

i∈Sr

{
B̂i

}]
I The robust estimator based on cnew:

t̂I ,R(cnew) =
∑
i∈S

dix
>
i B̂R(cnew)
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Simulation study: Results

Point estimator Normal distribution Lognormal distribution Pareto distribution

n = 50

t̂I,WLS
-0.3
(100)

-0.1
(100)

-0.1
(100)

t̂I,R (1.345)
-0.4
(101)

-13.5
(73.6)

-8.3
(51)

t̂I,CB (copt )
-0.8
(100)

-7.2
(77)

-4.9
(56)

t̂I,R (cnew)
-0.2
(101)

-8.7
(73)

-7.0
(38)

n = 100

t̂I,WLS
0.0

(100)
-0.5
(100)

-0.0
(100)

t̂I,R (1.345)
0.0

(102)
-14.6
(101)

-8.6
(59)

t̂I,CB (copt )
-0.3
(100)

-5.7
(84)

-3.8
(57)

t̂I,R (cnew)
-0.3
(100)

-6.1
(79)

-5.2
(39)

n = 200

t̂I,WLS
0.0

(100)
-0.2
(100)

-0.0
(100)

t̂I,R (1.345)
0.0

(102)
-14.6
(151)

-8.6
(87)

t̂I,CB (copt )
-0.2
(100)

-3.6
(89)

-2.5
(64)

t̂I,R (cnew)
-0.2
(100)

-2.8
(89)

-3.1
(49)

Table 3: Monte Carlo percent relative bias and relative efficiency of several
estimators
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Simulation study: Results

Point estimator Frechet distribution Weibull distribution Student distribution

n = 50

t̂I,WLS
-0.1
(100)

0.0
(100)

0.4
(100)

t̂I,R (1.345)
-9.2
(52)

-17.0
(87)

0.3
(73)

t̂I,CB (copt )
-5.4
(57)

-8.1
(86)

0.0
(81)

t̂I,R (cnew)
-7.6
(43)

-9.5
(86)

-0.0
(74)

n = 100

t̂I,WLS
0.0

(100)
-0.1
(100)

0.0
(100)

t̂I,R (1.345)
-9.4
(67)

-17.9
(122)

0.1
(72)

t̂I,CB (copt )
-4.1
(65)

-5.7
(92)

-0.1
(84)

t̂I,R (cnew)
-5.6
(51)

-5.7
(92)

-0.1
(78)

n = 200

t̂I,WLS
0.0

(100)
-0.0
(100)

-0.1
(100)

t̂I,R (1.345)
-9.7
(93)

-18.5
(192)

0.0
(71)

t̂I,CB (copt )
-3.0
(69)

-3.6
(95)

-0.2
(87)

t̂I,R (cnew)
-3.4
(54)

-3.6
(95)

-0.0
(89)

Table 4: Monte Carlo percent relative bias and relative efficiency of several
estimators
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Simulation study: Results
Point estimator

Mixture normal
(0.01)

Mixture normal
(0.03)

Mixture normal
(0.05)

n = 50

t̂I,WLS
0.1

(100)
-0.1
(100)

-.0.5
(100)

t̂I,R (1.345)
-1.8
(78)

-5.2
(67)

-7.6
(65)

t̂I,CB (copt )
-1.8
(83)

-3.8
(79)

-4.5
(82)

t̂I,R (cnew)
-2.2
(76)

-6.0
(71)

-8.0
(79)

n = 100

t̂I,WLS
0.1

(100)
-0.1
(100)

0.1
(100)

t̂I,R (1.345)
-1.9
(78)

-5.3
(72)

-8.1
(78)

t̂I,CB (copt )
-1.5
(85)

-3.1
(86)

-3.8
(91)

t̂I,R (cnew)
-1.7
(79)

-4.6
(79)

-6.3
(89)

n = 200

t̂I,WLS
0.0

(100)
0.1

(100)
-0.1
(100)

t̂I,R (1.345)
-1.9
(82)

-5.2
(85)

-7.7
(101)

t̂I,CB (copt )
-1.2
(89)

-2.0
(93)

-2.1
(96)

t̂I,R (cnew)
-0.7
(90)

-2.0
(91)

-1.7
(96)

Table 5: Monte Carlo percent relative bias and relative efficiency of several
estimators
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Simulation study: Results
Point estimator

Mixture lognormal
(0.01)

Mixture lognormal
(0.03)

Mixture lognormal
(0.05)

n = 50

t̂I,WLS
0.1

(100)
0.0

(100)
-.0.1
(100)

t̂I,R (1.345)
-1.6
(55)

-4.0
(48)

-6.1
(51)

t̂I,CB (copt )
-1.3
(63)

-2.8
(63)

-3.9
(69)

t̂I,R (cnew)
-2.0
(44)

-5.4
(47)

-7.9
(61)

n = 100

t̂I,WLS
0.0

(100)
0.0

(100)
0.1

(100)

t̂I,R (1.345)
-1.8
(59)

-4.1
(58)

-5.0
(63)

t̂I,CB (copt )
-1.2
(66)

-2.4
(72)

-3.1
(80)

t̂I,R (cnew)
-1.8
(48)

-4.7
(57)

-6.8
(79)

n = 200

t̂I,WLS
0.0

(100)
-0.1
(100)

0.0
(100)

t̂I,R (1.345)
-1.8
(66)

-4.0
(79)

-3.6
(81)

t̂I,CB (copt )
-0.9
(73)

-1.7
(83)

-2.1
(90)

t̂I,R (cnew)
-1.3
(58)

-3.3
(72)

-4.6
(96)

Table 6: Monte Carlo percent relative bias and relative efficiency of several
estimators
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Implementation via calibrated imputation

• Both robust estimators

t̂I ,CB(copt) = t̂I ,WLS −
1

2

[
min
i∈Sr

{
B̂i

}
+ max

i∈Sr

{
B̂i

}]
and

t̂I ,R(cnew) =
∑
i∈S

dix
>
i B̂R(cnew)

need to be implemented.

• Estimation of totals: data users simply compute

t̂I =
∑
i∈S

di ỹi , ỹi = riyi + (1− ri )y
∗
i

• How to implement these estimator? −→ Calibrated imputation
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Implementation via calibrated imputation

• Calibrated robust imputation: e.g., Ren and Chambers (2003),
Beaumont (2005) and Chen et al. (2022)

• Illustration for t̂I ,R(cnew)

• Initial imputed values: y∗i = x>i B̂WLS

• We seek final imputed values, y∗iF , i ∈ Sm, that minimize∑
i∈S

G (y∗iF/y
∗
i ),

subject to

t̂I ,F ≡
∑
i∈Sr

diyi +
∑
i∈Sm

diy
∗
iF=

∑
i∈S

dix
>
i B̂(cnew),

where G (·) is a pseudo-distance function.
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Estimation of the mean square error

• Estimator of the mean square error of t̂I ,R(cnew):

M̂SE = V̂
(
t̂I ,R(cnew)

)
+max

{
0, (t̂I ,R(cnew)− t̂I ,WLS )

2 − V̂
(
t̂I ,R(cnew)− t̂I ,WLS

)}
• Obtaining the terms V̂

(
t̂I ,R(cnew)

)
and V̂

(
t̂I ,R(cnew)− t̂I ,WLS

)
may

be obtained using a pseudo-population bootstrap procedure,
motivated by the reverse approach of Shao and Steel (1999) for
variance estimation in the presence of imputed data.

• Future work: Conduct a simulation study to assess the performance
of M̂SE, in terms of bias.
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THANK YOU.
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