Frequent and timely monitoring of poverty, inequality, and poverty profiles using SWIFT during the COVID-19 Pandemic
COVID-19 High Frequency Phone Surveys (HFPS)

• COVID-19 HFPS has been carried out by the World Bank in more than 50 countries to monitor the impact of the COVID-19 pandemic frequently and quickly

• Results are recently summarized in the globally harmonized database and its dashboard

• But the COVID-19 HFPS cannot monitor poverty directly because consumption or income data collection is too time-consuming and complex

 • SWIFT can be a solution
What is SWIFT?

SWIFT: Rapid Poverty Assessment Tool

- A new household survey instrument engineered by machine learning technique and new ICT technology
- Estimate household expenditure and poverty data from only 10 to 15 questions
- Implemented or under preparation in 65 countries for 151 applications
- SWIFT with the COVID-19 HFPS is piloted in 20 countries
How does SWIFT work?

C: Log of Consumption
X: Variables collected by HBS
X': Among X, variables correlates the most with consumption; variables collected by HFPS
\(\hat{C} = F(X') \): Predicted consumption

Collecting data X' using smartphones/tablets = CAPI (Computer Assisted personal interview)

Use Machine Learning techniques to find a formula that connect consumption with limited number of non-consumption variables

Identify only the most relevant variables X'

Household Budget Survey

HFPS survey
A typical formula F(X)

<table>
<thead>
<tr>
<th>Variables</th>
<th>2010 Rural model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficient</td>
</tr>
<tr>
<td>Intercept</td>
<td>16.87</td>
</tr>
<tr>
<td>Household size</td>
<td>-0.22</td>
</tr>
<tr>
<td>Household size 2</td>
<td>0.01</td>
</tr>
<tr>
<td>Dependency ratio</td>
<td>-0.77</td>
</tr>
<tr>
<td>Dependency ratio 2</td>
<td>0.52</td>
</tr>
<tr>
<td>Head: Male</td>
<td>0.10</td>
</tr>
<tr>
<td>Head: Grades enrolled 2</td>
<td>0.00</td>
</tr>
<tr>
<td>Cooking: coal/wood</td>
<td>0.21</td>
</tr>
<tr>
<td>Own: Car</td>
<td>0.32</td>
</tr>
<tr>
<td>Own: TV</td>
<td>0.10</td>
</tr>
<tr>
<td>Own: Vent</td>
<td>0.12</td>
</tr>
<tr>
<td>Me-Zochi dist.</td>
<td>0.15</td>
</tr>
<tr>
<td>Cantagalo dist.</td>
<td>0.21</td>
</tr>
</tbody>
</table>

In the case of Sao Tome Principe, we needed only 10 variables to get adj R2=40%
Challenges in using SWIFT with HFPS for poverty monitoring

1. The samples of phone surveys are often not nationally representative
 • Telephone ownerships are not uniform particularly in poorer countries, resulting in a severe rich bias

2. A consumption model \((F(X))\) might not be correct due to the COVID-19 outbreak
 • A large shock can change a consumption model \((F(x))\) - model instability over time
Solution for sampling bias correction - Reweighting

- Correction of “rich bias” using some reweighting techniques with a nationally representative surveys or census (called “reference survey/census”)
 - **Propensity score matching** - matching household unit record between a phone survey and a reference survey/census
 - **Maxentropy & post stratification** – matching means of key variables between a phone survey and a reference survey/census
- Details are available in Zhang and Yoshida (2022)
A sample case – before and after reweighting

<table>
<thead>
<tr>
<th>Variable name</th>
<th>Reference survey</th>
<th>A phone survey</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Original</td>
<td>Reweighted</td>
</tr>
<tr>
<td>Refrigerator</td>
<td>26.80%</td>
<td>44.40%</td>
<td>26.80%</td>
</tr>
<tr>
<td>Two-wheeler</td>
<td>49.40%</td>
<td>65.90%</td>
<td>49.40%</td>
</tr>
<tr>
<td>Washing machine</td>
<td>9.90%</td>
<td>13.10%</td>
<td>9.90%</td>
</tr>
<tr>
<td>TV</td>
<td>59.90%</td>
<td>91.60%</td>
<td>59.90%</td>
</tr>
<tr>
<td>casual</td>
<td>9.20%</td>
<td>10.50%</td>
<td>9.20%</td>
</tr>
<tr>
<td>salaried</td>
<td>4.70%</td>
<td>4.20%</td>
<td>4.70%</td>
</tr>
<tr>
<td>selfemployed</td>
<td>21.60%</td>
<td>17.40%</td>
<td>21.60%</td>
</tr>
</tbody>
</table>
Model stability

2016 2020 March 2020 May 2020 August

HBS COVID HFPS Rd 1 HFPS Rd 2

Training data

HBS HFPS

HFPS round 1 and round 2
SWIFT PLUS – Including fast-changing variables in models to limit the model instability

1. Household demographics and housing conditions
 • Usually very little changes over time
 • Good for estimating cross-sectional variations
 • Bad for estimating intertemporal variations

2. Asset Ownership
 • Relatively slow changes but respond well to the economic upturn in the medium term
 • Irreversibility – cannot be reduced easily

3. Fast changing variables: Consumption dummies, food insecurity
 • Quick to respond to both negative and positive changes
 • Good to predict poverty under economic downturns
Power of SWIFT Plus

Comparing the performance of standard SWIFT and SWIFT PLUS using Afghanistan household survey 2011 and 2016

<table>
<thead>
<tr>
<th></th>
<th>Actual</th>
<th>Standard SWIFT</th>
<th>SWIFT PLUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>38.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td>54.5%</td>
<td>39.4%</td>
<td>53.1%</td>
</tr>
</tbody>
</table>
Results of SWIFT: Frequent estimates of poverty

<table>
<thead>
<tr>
<th>Country</th>
<th>Pre-COVID</th>
<th>May-20</th>
<th>Jun-20</th>
<th>Jul-20</th>
<th>Aug-20</th>
<th>Sep-20</th>
<th>Oct-20</th>
<th>Nov-20</th>
<th>Dec-20</th>
<th>Jan-21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethiopia</td>
<td>1.10</td>
<td>1.14</td>
<td>1.18</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Malawi</td>
<td>1.09</td>
<td>1.17</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Rwanda</td>
<td>1.09</td>
<td>1.11</td>
<td>1.18</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Somalia</td>
<td>1.09</td>
<td>1.11</td>
<td>1.18</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>St Lucia</td>
<td>1.09</td>
<td>1.11</td>
<td>1.18</td>
<td>1.2</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Zimbabwe</td>
<td>1.09</td>
<td>1.11</td>
<td>1.18</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Results of SWIFT: Frequent estimates of inequality

Pre-COVID: 1.01
May-20: 1.04
Jun-20: 1.04
Jul-20: 1.04
Aug-20: 1.04
Sep-20: 1.04
Oct-20: 1.04
Nov-20: 1.04
Dec-20: 1.04
Jan-21: 1.04

Pre-COVID: 0.91
May-20: 0.95
Jun-20: 0.95
Jul-20: 0.95
Aug-20: 0.95
Sep-20: 0.95
Oct-20: 0.95
Nov-20: 0.95
Dec-20: 0.95
Jan-21: 0.95

Countries: Ethiopia, Malawi, Rwanda, Somalia, St Lucia, Zimbabwe
Results: Outreach of government assistance between the poor and national average

(a) Cash transfers
- Rwanda (Jan 2021): National 5.4%, Poor 7.6%
- Somalia (Jul 2020): National 5.8%, Poor 6.0%
- Saint Lucia (Aug 2020): National 6.6%, Poor 7.2%

(b) Food
- Saint Lucia (Aug 2020): National 8.5%, Poor 8.1%
- Zimbabwe (Sept 2020): National 1.2%, Poor 1.9%
Opportunities for the future

1. With SWIFT, we can address data deprivation
 • At this point, the global poverty database of the World Bank shows poverty data are available every 7 years in low-income countries and fragile states
 • But, with SWIFT, we can now produce poverty, inequality, and poverty profiling annually, quarterly or monthly in even these countries

2. With SWIFT, we can have frequent monitoring of poverty during crises
 • SWIFT enabled us to monitor poverty during the COVID-19 pandemic
 • SWIFT enabled us to monitor poverty immediately after a cyclone and surging inflation
SWIFT Team and Contacts

Nobuo Yoshida nyoshida@worldbank.org
Silvia Malgioglio smalgioglio@worldbank.org
Kazusa Yoshimura kyoshimura1@worldbank.org
Shinya Takamatsu stakamatsu@worldbank.org
Xueqi Li xli17@worldbank.org
Shivapragasam Shivakumaran shiva18@gmail.com
Danielle Aron daron@worldbank.org
Anjali Agrawal aagrawal13@ifc.org